Optimal Designs for Multipliers and Multiply-Accumulators

Vojin G. Oklobdzija
Dept. of Electrical and Computer Engineering
University of California at Davis
Davis, CA 95616

Email: vojine@ece.ucdavis.edu

Paul F. Stelling!
Dept. of Computer Science
University of California at Davis
Davis, CA 95616

Email: stelling@cs.ucdavis.edu
Keywords: Parallel Multiplier, Multiply-accumulate, Final Adder, Algorithms, VLSI circuits.

ABSTRACT

Multiply and Multiply-Accumulate (MAC).are important and expensive operations. They are
frequently used in general computing and are especially critical to the performance of Digital Signal
Processing and video/graphics applications. As a result, any improvement in the delay for
performing these operations could have a positive impact on clock, speed, instruction time, and
processor performance. We show how the performance of the parallel multiplier can be improved
by customizing the final adder to the input delays of the signals from the Partial Product Reduction
Tree (PPRT), as opposed to using a more traditional design optimized for inputs of uniform delay.

We present strategies for designing optimal Hybrid Adders for the specified profiles that include
Conditional Sum blocks. We use these strategies to develop a Hybrid Adder for a 32-bit parallel
multiplier whose final adder input delays correspond to the output delays of an optimal TDM
PPRT. The resulting adder improves by over 20% the incremental delay of a standard Conditional
Sum adder.

Finally, we use an additional innovation and apply our results to multiply-accumulators, giving a
multiply-accumulator design that is (for most sizes) as fast as multipliers of the same size. Thus a
single (optimal multiply-accumulate) circuit can be used for both operations without delay penalty,
allowing MAC to be efficiently and effectively implemented as an instruction in RISC CPUs.

1. Introduction.

The problem of designing improved multipliers has gained a lot of attention recently. Here we
examine the problem of designing optimal final adders for parallel multipliers and show how to
apply parallel multiplier design approaches to derive optimal multiply-accumulator (MAC) designs.

Parallel multipliers work in a manner similar to that used in long multiplication. First the partial
products of the factors are generated, then they are combined using a Partial Product Reduction Tree
(PPRT) to give two bits per column (i.e., two (2n-1) bit numbers), which are added in a Final Adder
(FA) (see Figure 1).

The problem of constructing fast and efficient PPRTs has been previously addressed [1,2,6,8,13].
In this paper we address the design of Final Adders using

optimal Hybrid Adders that incorporate conditional sum Parallel Multiplier Model
blocks. Finally, we show how an additional innovation can . . 1o
be used to incorporate our multiplier results into the design ' ":"":—;—:"
of MACs, yielding circuits that are (for most sizes) as fast o b o0 o0

as multiplier circuits.

The problem of designing optimal adders when all input
bits arrive at the same time is one that has been well studied
[12]. A related problem that has recently gained attention
(5,9,10] is the design and implementation of efficient adder
circuits when the bit arrival times are arbitrary (but known

(PP)
BRERIEEERE

in advance), as in the case of the FA for a parallel multiplier.
The input profile that we use here is the output profile of

Figure 1: Logical representation of
a parallel multiplier.

739

the optimal TDM PPRT for a 32-bit parallel as described by LotentFomest Gutpt Praie Too TOM FPRT
Martel, et al [2,3], and shown in Figure 2. (Our approach |
works for more general profiles, but we limit ourselves here
due to space considerations.) i,

The usual practice has been to add the last two rows of
partial products using as the FA one of the fast schemes
such as Carry Lookahead (CLA) or Conditional Sum (CSA). | " rsrrsrrrerraresrreerresrr
This concept was first challenged by Oklobdzija in [5], |Figure 2: The output profile of thi
where it was shown that under non-equal signal arrival |optimal TDM PPRT for a 32-bit
profiles some of the commonly known fast schemes for |multiplier. There is only one outpy
addition do not perform well. In fact, the optimal FA is |pjt for position 0, and two output
really a "hybrid" consisting of a number of blocks that can |pjss for positions 1 through 62.
encompass several different types of adders. Such adders
were introduced and analyzed by Stelling and Oklobdzija in [9,10], where they developed optimal
adders using Ripple-Carry, Carry-Skip, and Carry-Select blocks under a simple timing model. Here
we extend that model to include the use of Conditional Sum blocks, achieving over 20%
improvement in the incremental delay of the Symmetric Conditional Sum adder.

2. Gate Delays and Conditional Sum Blocks.

As in [2,3,7], we calculate delays by normalizing relative to the time delay of an XOR gate, based
on the delays in 1-micron array-based logic [14]. These delays vary with the fan-out of the gate,
and are shown in Table 1. (Note that we use this convention for convenience, and our results do not
rely on it. Also, the delays in [14] are provided only for output line counts that are powers of 2,
the numbers in parentheses represent the numbers of output lines for which we used the given delay
values.)

All n-bit adder schemes can be characterized as being made up of blocks that each take as input a
carry-in bit (except possibly the first block) and some input bits correspording to the k columns in
the block, and generate sum bits for the block and a carry-out value that is propagated in some
fashion to appropriate blocks with more significant bits. For such designs as Ripple-Carry,
Carry-Skip, and Carry-Lookahead the column input bits are the initial inputs and/or signals
generated from them (e.g., carry generate and carry propagate signals).

Carry-Select blocks take as input a carry-in bit, alternative sum bits, and alternative carry-out
bits. (The alternative bits have the appropriate values assuming that the carry-in bit has value 0 or
value 1.) The Carry-Select block then uses the carry-in signal to select for output the appropriate
sum bit and a carry-out bit signals. (Note that this selection can be done using either standard
non-inverting multiplexors or inverting multiplexors. We use multiplexor to refer to both types.)

Conditional Sum blocks are essentially nested Carry-Select blocks where the smallest blocks
consist of gate combinations that generate the sum and carry-out signals for the column inputs given

Input Number of Output Lines | each of the possible carry-in

Device | Line(s) 1 2 4 8 (6-10)] 16 (11-18)| 32 (19|} values (0 and 1). Given two

Inv Mux sffos” Jos Jos Jo7s 1 1.25 input values A and B, the needed

A,BIf 0.875 0.875| 1 1 1 1.125 outputs can be generated as

Mux Sif 1 1 1 ! 1.125 1.5 follows (note that each signal is

AB[[0.75 | 0.875] 0.875 I 1 1125 llneeded only in one of

NAND (o5 Jos Jos [o625]0875 1125 | complemented/uncomplemented
NOR [0.5 0.5 [0.625]0.75 1 1.75 form):

Not [025 ¢ Carry-in = 0: Sum: 4 XOR

Table 1: Inpur to output (equivalenxor) delays for devices by B in 1 xor delay;

number of output lines.

740

Complement of sum: 4 NXOR B in 1.25 XOR delays; Carry-out: 4 AND B in 0.75 XOR delays;
and Complement of carry-out: 4 NAND B in 0.5 XOR delays.

« Carry-in = 1: Sum: 4 NXOR B in 1.25 XOR delays; Complement of sum: 4 XOR B in 1 XOR
delay; Carry-out: 4 OR B in 0.75 XOR delays; Complement of carry-out: A4 NOR B in 0.5 XOR
delays.

Thus it takes 1.25 XOR delays to generate either the sum or the complemented sum values for
both carry-in values. Since the only sum signals whose polarity (complemented or
non-complemented) matters are the final output sum values, we design our Conditional Sum blocks
using the faster of standard multiplexors and inverting multiplexors. If the number of inverting
multiplexors applied to the sum signal is even (odd), then we generate and use the un-complemented
(complemented) sum signal to get the correct ouput. Note that gates that generate (or select) sum
signals (or complemented sum signals) always have a single output line (to an enclosing block or
sub-block, or to the final output).

Carry-Select sub-blocks are of two types: those whose carry-out signal is propagated to an
enclosing Carry-Select block, and whose carry-out signals are cascaded to a subsequent block. For
cascaded carry-outs, the complemented signals can be used in place of non-complemented signals by
merely switching the 4 and B inputs to the multiplexor, so that the complement of the carry-out can
always be generated and used, regardless of the number of times it will be propagated.

3. Adder Delay Analysis.

We now address the use of Conditional Sum blocks in the FA. We generalize the notion of a
Conditional Sum block to that of a Carry-Select block that encloses (contains) a number of
Carry-Select sub-blocks (the lowest-level block need not be for a single bit position as in the
traditional Conditional Sum adder). We denote by B;: the jth sub-block enclosed by B;, where the
Outpas Detars of Symmteis Codienst $am Adder nesting can be done to arbitrary depth.

The optimal Conditional Sum adder for the uniform input
profile is one which cascades (log n(carries, with the kth
carry selecting on 2% positions, as in the case where the n
bits to be added are subdivided into groups of 2los(-1) and
n-2log(n-1). Slightly abusing definitions, we call this the
Symmetric Conditional Sum Adder. .

Based on the above delays, we modelled the delays ofa

Figure 3: The delays of the Symmetric Conditional Sum Adder for adding two 62-bit
Symmetric Conditional Sum adder numbers (the size of the inputs to the final adder of a 32-bit
when applied to uniform delay multiplier). Figure 3 shows the delays of that adder when
inputs. used to add two numbers whose signals are all available at
T o e Cotmen Som time 0 in total time equivalent to 6.375 XOR delays.
" e Figure 4 shows the output delays of the same adder when
) \ | i .»é-_ applied to the profile of , giving a maximum output delay of
gl | (AR AL 17.375 xoR delays. Thus when applied to the profile the
Mg e RS - T Jatest output is the same as if all of the input signals arrived
1] ‘ “'-\: ! at the same time as the latest signal, even though many of
A . the signals arrive significantly earlier.

4. Optimal Hybrid Adder Delays.

Figure 4: The delays of the We now examine the problem of designing an optimal
Symmetric Conditional Sum adder | Hybrid Adder for the profile of using Ripple-Carry,
when applied to the 32-bit optimal Carry-Skip, and arbitrarily nested Carry-Select and
TDM PPRT output profile. Conditional Sum blocks. We first derive a lower bound on

741

the delay of such an adder, and then show that the bound can be achieved.
4.1. A lower bound.

We use the optimallity of symmetric Conditional Sum adders for uniform input arrival profiles to
derive a lower bound on the adder delay. First we observe that there are eight columns (numbers 32
through 39) with the maximum delay of 11 Xors. Given that Conditional Sum adders are faster than
Ripple-Carry, Carry-Skip, and Carry-Lookahead adders given a uniform input profile, we use a
Symmetric Conditional Sum block on those positions. It will remain to combine that block with
adder blocks for the remaining columns. There must be at least two such blocks, which we will call
B and By, over columns 1-31 and columns 40-62, respectively (we call the block over columns
32-39 By). The fastest way these could be combined is by Carry Selection; either by using
cascading carry selection from By to B} to By; or by cascading carry selection from By to a larger
block consisting of B} and B3, with those two combined by cascading carry select. Assuming
fan-out 1, the (alternative) sum and carry outputs for B; will be generated at times 14.625 and
14.375, respectively. Suppose that the carry-out signal from By can be generated arbitrarily early
(at time 1), as can the alternative sum and carry-out output signals for B, (at time t2). Then under
the first approach the final output sum bits for columns 32 through 39 will be available at time
max(tp+1.0, 14.625+0.75) = 15.375, cascading carry-out bit from B; would be available at time
max(f+1.25, 14.375+1.125) = 15.5, and the sum bits and carry-out bit from the columns in B,
would be available at time max(15.5+0.5, £,+0.875) = 16.0. (This bound is achieved so long as to
(14.25 and ¢, (15.125.) Under the second approach the cascading carry-out bits from B, would
arrive at time 14.75 (due to fan-out of 24) and finish selecting the alternative B, sum and carry bits
at time max(14.75+0.5, 1,+.875)=15.25, so that the final sum bits for B; would be available at time
max(fp+1.0, 14.625+.75) (16.0, and the final output sum bits for B, would be available at time
max(#+1.0, 15.25+0.75) = 16.0. (This bound is achieved so long as # (15.0 and #, (14.375.) Thus
we have a lower bound on the total delay of 16.0, achievable by both approaches, but with differing
bounds on the delays of the output signals from By and B5.

4.2. Achieving the lower bound.

To achieve the lower bound established above we must meet the 73 and #, bounds above. We now
describe how we achieve that goal.

First we note that a Ripple-Carry Block will suffice for the first 5 positions, since the delay of
the carry-out from that block will not impact the overall adder delay [9,10]. Next, we note that for
any two bit positions i and i+1 where the input delays are j and j+1, we can use a (simpler)
Ripple-Carry sub-block and achieve the same delays as with a Symmetric Conditional Sum block.
Finally, we note that in general it is advantageous with nested Carry-Skip blocks to cascade the
carry-out signals whenever the multiplexor output delays resulting from the (cascaded) select line
would be (the delays from the (sum and carry-out) data lines. This will result in both faster and
simpler (fewer devices) adder designs (due to shallower nesting than would be needed with
propagation).

We use these principles in our design, breaking columns 1 through 30 into 10 blocks, over bit
positions 1-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-19, 20-23, 24-26, and 27-30. The first of these
blocks is a Ripple-Carry block, and the remainder are combination Ripple-Carry and Conditional
Sum blocks, with the carry-outs cascaded from each block to the next. Using this approach the last
carry-out from By is generated at time 13.875 (<14.25) if the first approach is used, and at time
14.125 (< 15.0) if the second approach is used (due to greater fan-out).

Next we consider columns 40 through 62. We achieve the ¢, bounds by using multi-level nested
Carry-Skip sub-blocks, with the first level division being ((40-43), (44-62)), the next being ((44-50),
(51-62)), etc. When it is possible to do so without making the delays too large, the underlying

blocks are simplified, for example, a Ripple-Carry design is Dot Dy of Opbs Wteld Adde
used as the base adder for the sub-block over columns ‘

58-62. In this manner we generate the needed signals by
time 13.75 (<14.375<15.125).

The latest signal from the adder is thus generated at time
16.0 by both approaches, giving over 20% improvement in
the incremental delay over the traditional Symmetric
Conditional Sum adder (from 6.375 xors to 5.0 xors). The
delays of the adder using the first approach is shown in | : i
Figure 5. Figure 6 compares the output delay profiles of Efbl:'fs Asd:de;% f%‘zyz}%’gg‘} ?Z’flb'?tal
the Symetric Conditional Sum adder and the Hybrid Adder |TDM PPRT output profile using
using the first approach. (A block diagram of the resulting |Approach 2. The solid vertical lines

Final Adder is omitted due to space limitations.) denote the block divisions, and the
. . dashed vertical lines denote the
5. Multiply-Accumulator Design divisions of major sub-blocks.
We can apply the design approach described above to Sy Contimms e D3I 3% pimat Hyid

MACs (which take as input two n-bit factors and a 2n-bit
addend), with the addition of one further inovation [11].
We recognize that we can include the addend in with the

partial products as an input to the Partial Product g
Reduction Tree (PPRT) as shown in Figure 7. The number | * 1/
of inputs to each column then coincides with the number of | *= T T

inputs to the next larger column in the PPRT foran |e=s=em=ss== —— e
(n+1)-bit multiplier. Thus the optimal PPRT and Final |Figure 6: The comparitive delays 0]
Adder circuits for an (n+1)-bit parallel multiplier can be the Symmetric Conditional Sum adder

e . L1 and the optimal Hybrid Adder
used for an n-bit MAC. But for most sizes of multipliers n (Approach 1) when applied 10 the

and (n+1) the total delay is the same. Our research shows |oprimal 32-bit TDM PPRT output
that this result can be achieved for most sizes of MACs, profile.
including the common case of 16-bit factors and a 32-bit

addend (also 32-bit factors and 64-bit addend). Thus MAC can be implemented in a circuit with the

same delay as a multiplier. (The delay graphs and circuit diagrams for thqse cases are omitted due
to space limitations).
Thus, multiply-accumulate circuitry can be used in most cases for both operations with no delay
penalty, both reducing the complexity of the ALU and allowing the MAC instruction to be
implemented without penalty in any ALU that includes multiplication.

Doty (Tahabest 30N
[]
1
-
D
]

6. Conclusions.

We have shown how to design an Hybrid Adder made
up of blocks of Ripple-Carry and Conditional Sum
blocks. Our method has produced a structure which we
showed to be optimal for the case of a 32x32-bit
multiplier. The improvement in incremental delay is
estimated to be >20% over commonly used symetric
Conditional Sum schemes. This improvement translates
to >7.9% reduction in total multiplication time. We have
also shown how to combine these results with the
innovation of including the MAC addend with the partial |Figure 7: Including the MAC addend
products as an input to the PPRT to create optimal |with the partial products in a parallel
multiply-accumulators that are as fast as multipliers for |multiplier.

Parallel Multiplier-Model

743

744

sizes of interest.

We are presently working on extending our results to find the simplest (fewest gates) adders with
the optimal delay. We are also working on applying our results to other applications resulting in
non-uniform input delays. With our approach we have determined that we can build faster adders
using simpler circuitry, but we have not yet completed optimal designs.

References

(11 K. Hwang, Computer Arithmetic: Principles, Architecture and Design, John Wiley and Sons,
1979.

(2] Charles Martel, Vojin Oklobdzija, R. Ravi, and Paul F. Stelling, “Design Strategies for Optimal
Multiplier Circuits”, Proceedings of the 12th Symposium on Computer Arithmetic pp. 42-49
(1995).

[3] Charles Martel, Paul F. Stelling, Vojin Oklobdzija, and R. Ravi, “Optimal Circuits for Parallel
Multipliers”, in press, IEEE Transacton on Computers, 1996.

(4] Vojin G. Oklobdzija and Earl R. Barnes, “Some Optimal Schemes for ALU Implementation in
VLSI Technology”, Proceedings of the 7th Symposium on Computer Arithmetic, 1985.

[5] Vojin G. Oklobdzija, “Design and Analysis of Fast Carry-Propagate Adder Under Non-Equal
Input Signal Arrival Profile”, Proceedings of the 28th Asilomar Conference on Signals, Systems, and
Computers, 1994.)

(6] Vojin G. Oklobdzija and David Villeger, “Improving Multiplier Design by Using Improved
Column Compression Tree and Optimized Final Adder in CMOS Technology”, in press, IEEE
Transactions on VLSI, 1995. '

[7] Vojin G. Oklobdzija, David Villeger, Simon S. Liu, “A Method for Speed Optimized Partial
Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach,”
IEEE Transaction on Computers, March 1996.

(8] P. Song and G. De Michelli, **Circuit and architecture trade-offs for high speed multiplication, "
IEEE Journal of Solid State Circuits, 26, 1991.

[9] Paul F. Stelling and Vojin G. Oklobdzija, “Design Strategies for the Final Adder in a Parallel
Multiplier”, Conference Record of the 29th Asilomar Conference on Signals,” Systems, and
Computers, pp.591-595, 1995.

[10] Paul F. Stelling and Vojin G. Oklobdzija, “Design Strategies for Optimal Hybrid Final Adders
in a Parallel Multiplier”, Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, December 1996.

(11] Paul F. Stelling and Vojin G. Oklobdzija, “Implementing Multiply-Accumulate Operation in
Multiplication Time”, in press, Proceedings of the 13th Symposium on Computer Arithmetic.

[12] Earl E. Swartzlander, ed., Computer Arithmetic Vol. 1 and 2, IEEE Computer Society Press,
(1990).

[13] C. S. Wallace, ** A Suggestion for a Fast Multiplier," IEEE Transaction on Computers, EC 13,
pp-14-17, 1964.

(14] 1.0-Micron Array-Based Products Databook, LSI Logic Corporation, September 1991.

1(Research supported by NSF grants CCR-94-03651 and CCR-91-03937.

