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Abstract

In this paper we address the problem of adding two n-
bit numbers when the bit arrival times are arbitrary (but
known in advance). In particular we address a simplified
version of the problem where the input arrival times for
the it significant bits of both addends are the same, and
the arrival times t; have a profile of the form:

o Sh <. .. <t =t =...38p Sipp1 > ... 2
tn—1

This profile is important because it matches the signal
arrival time profile of the reduced partial products in a
parallel multiplier before they are summed in the final
adder.

In this paper we present a design strategy specific
to arrival time profiles generated by partial product re-
duction trees constructed by optimal application of the
Three Dimensional Method presented by Oklobdzija, Vil-
leger, and Lui and subsequently analyzed by Martel, Ok-
lobdzija, Ravi, and Stelling. This strategy can be used to
obtain adders for any arrival time profile that matches
the above form, as well as a broad class of arrival time
profiles where even greater variation in the input tithes
15 allowed.

Finally, we show that our designs significantly out-
perform the standard adder designs for the uniform sig-
nal arrival profile, yielding faster adders that (for these
profiles) are also simpler and use fewer gates.

Keywords: Parallel Multiplier, Final Adder, Algo-
rithms, VLSI circuits.

1 Introduction

The problem of constructing fast and efficient adders
when all input bits arrive at the same time is one that
has been well studied [3]. A related problem that is
also important in the construction of high performace
machines is the design and implementation of efficient
adder circuits when the bit arrival times are arbitrary
(but known in advance). One situation of this type
is the final adder for a parallel multiplier. The design
of the final adder for a parallel multiplier is important
because any improvements in final adder performance
directly impact multiplication time, and multiplication
is a commonly used and expensive operation.

In [6], Oklobdzija, Villeger, and Liu suggested a new
approach, the Three Dimensional Method (TDM), for
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Partial Product Reduction Tree (PPRT) design that
produces PPRTs that outperform the current best de-
signs. In the TDM the PPRT is designed by inter-
connecting (3,2)-adders (full adders) in a globally opti-
mal way based on careful modelling of input-to-output
delays. Specifically, delays are measured in equiva-
lent XOR delays. If a < b < d are the inputs to a
(3,2)-adder then the sum output is generated at time
s = max(b+ 2,d+ 1) and the carry at time ¢ = d + 1.
The TDM approach was subsequently analyzed by Mar-
tel, Oklobdzija, Ravi, and Stelling in [10], and optimal
TDM PPRT designs for reducing the partial products
to two rows typified.

The usual practice has been to add the last two rows
of partial products using as the Final Adder (FA) one
of the fast schemes such as Carry Lookahead (CLA).
This concept was first challenged by Oklobdzija in [7],
where it was shown that under the non-equal signal ar-
rival profile some of the commonly known fast schemes
for addition do not perform well. For example, if the
LSB arrives first and MSB last, with the signal delay
increasing by % equivalent XOR, delay per bit, then the
CLA adder will be slower than a Ripple Carry Adder
(RCA). Given that the signal arrival profile to the final
adder is more complex, the problem of constructing the
FA is becomes more complicated. This is augmented
by the fact that the optimal FA is really a ”hybird”
consisting of a number of blocks that can encompass
several different types of adders. In this paper we will
examine the design of optimal adders that may con-
tain Ripple-Carry, Carry-Skip, and Carry-Select blocks.
The extension of our ideas to Carry-Lookahead adders
is straight-forward, but we will not address it here.

1.1 Adder goals

In [10] the PPRT circuits for m-by-m bit multiplica-
tion were evaluated based on the corresponding vectors
(to,t1,--.,tam—2) of the output times of the latest out-
put signal for each column. (All inputs to the PPRT
were assumed to be available at time 0, and ¢; is the time
at which the last output bit for column ¢ was generated.)
Following their useage, we say that a TDM PPRT cir-
cuit with output time vector V = (vp,v1,. .., V2m-2)
is undominated in its class if there is no other TDM
PPRT circuit which takes the same inputs and gener-
ates an output time vector U = (uo, us, . . ., uQm_j such
that u; < v Vi € {0,1,...,(2m — 2)}, and V # U.
A “Latest-fewest” heuristic was introduced for evaluat-



Latest-Fewest Output Profile For TDM PPRT
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Figure 1: The output profile of the Latest-Fewest TDM
PPRT. There is only one output bit for position 0, and
two output bits for positions 1 through 62.

ing the output vectors of the undominated circuits in a
class. By this heuristic V' comes before U if the largest
value which does not appear in exactly the same posi-
tions in V and U either first appears later in U, or first
appears in the same position of both V and U, but last
appears later in U. The optimal vectors by this heuris-
tic both have the minimum maximum delay value and
follow the well known profile pattern for other PPRT
designs whereby the signals for the least and most sig-
nificant bits are generated earliest, with the middle sig-
nals appearing later. In fact, they were of the following,
stricter, pattern: tp < t; < ... < g = {41 = ...
tp >tppr > ... > tom—2.

In this paper will will address the design of efficient
adders for such a profile. By efficient we mean that the
adder design should be fast, of small area, and use low
power. When alternative designs have the same speed,
we prefer the simpler design (with fewer gates).

2 Adders for TDM PPRT Profiles

In [6, 10}, TDM PPRT designs were analyzed based
on the time delay of an XOR gate, with the delay of
NAND and NOR gates being approximately 0.5 XOR
delays. In this paper we will also use this convention,
although our results do not rely on it. By this conven-
tion, a carry ripples through a full adder ((3,2) adder)
with 1 XOR delay (1 NAND delay plus 1 NOR delay).
Based on this convention, the latest-fewest TDM PPRT
output profile (and hence final adder input profile) for
32-bit multiplication is given in Figure 1.

As can be seen from the figure, starting with the out-
put bits for column 1, the delays first increase with the
column numbers and then decrease. Also, after column
4, the number of columns with integer delay ¢ is increas-
ing with i. As the multiplication size m increases, the
changes to the delay profile consist generally of the in-
sertion of columns of higher delay near the middle of
the profile. In the following sections we will first show
how to construct an adder for profiles of this form, and
then we will generalize the approach for a more general
(less restricted) class of profiles.

All n-bit adder schemes can be characterized as be-
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ing made up of blocks that each take a carry-in bit (ex-
cept possibly the first block), add some portion of the
n bits, and generate a carry-out value that is propa-
gated in some fashion to appropriate blocks with more
significant bits. These blocks are typically (but need
not be) subdivided into smaller blocks, and so on, until
some smallest sub-block (generally a full adder, some-
times called a (3,2)—adder?. We will only consider de-
signs where the smallest block is a (3,2)-adder, but will
allow the basic blocks (and even sub-blocks within a
block) to be of various types. lLe., some blocks may be
Ripple-carry blocks, some Carry-skip blocks, and oth-
ers Carry-lookahead or Carry-Select blocks. By using
a Hybrid adder in this fashion we will achieve signifi-
cantly faster addition while maintaining overall simplic-
ity and regularity within blocks required for compact
and power-efficient circuits.

Before describing our approach in detail, we make
the following definitions, which we will use extensively.
These definitions are generalizations of definitions that
have been used elsewhere [5] in relation to adders where
all input signals arrive at the same time.

Definition: Given an input profile T = (fo,...,%n),
and blocks By, ..., By of sizes by, . . ., by respectively, we
define:

e I(B;) is the internal-carry delay of block B;, the
maximum delay associated with generating a carry
within B; and propagating it within the same block;

G(B;, By) is the carry-generate delay of block B;
and Bj;, the maximum delay associated with gener-
ating a carry within B; and propagating it to block
J

P(B;, B;) is the carry-propagate delay for blocks
B; and B; (j > 4), the maximum delay associated
with propagating a carry that arrives at B; from
any previous block to B;;

A(B;) is the carry-assimilate delay of block B;,
the maximum delay associated with propagating a
carry within B; when that carry arrives at B; from
any previous block; and

L 4(B;) is the latest delay possible that a carry gen-
erated in any block before B; can arrive at B;.

Note that these definitions all pertain to the time
at which the carry-in signals become- available for the
relevant column or block. The sum signal for each col-
umn is then generated between 1 and 2 XOR delays
later. Our goal in designing a Hybrid Adder is to mini-
mize the maximum of these delays over all blocks, sub-
ject to any power, space, and complexity constraints
we wish to impose. Depending on the block structures
used, the various delays above may or may not be rele-
vant to a given design. For example, P(B;, B;) may not
be an appropriate measure for two blocks in a Carry-
Lookahead Adder, since for three blocks B, B;, and
B;j (h < i< j), B; is not on the critical path for prop-
agating carries from Bj to B;. In our description of
the Hybrid Adder design we must be careful to identify
which delays are relevant to each block or combination



of blocks. Note that the definitions above make no as-
sumptions about the structure of the blocks, but that
La(B;) depends on G(Bp, B;) for all blocks By, h < 1,
an could also depend on P(By, B;) for some blocks B,

<1

We show how we apply these definitions for some
standard (and well-known) types of adders. First we
apply it to a Ripple-Carry Adder block B; containing
bits t,,...,ts. Using 1 XOR delay as our time unit, we
then have that for each block (column) B;:

o 1(B) = max (t+s-j);

r<j
e G(B;, B;) is relevant only for j = i+ 1, and
G(Bi, Biy1) = max (tj +s—j+1);
e P(B;, B;) is relevant only for j = i 4+ 1, and

P(B,:, Bit1) = max(LA(Bi) +s—r+ l’rlél]asxs(tj +
s—j+1));
® A(B;) = max(La(B;) +s -, rlgf»gg(tj +5—3));

e L,(By) = 0 (assuming no carry in to the adder,
otherwise the latest time at which it can arrive),
and

L4 gA(B,') = max(G(B,-_l,Bi),P(B,:_l,B,-)) for 2 ;ﬁ

Observation 2.1 If I(Bi), G(B,‘,B,q.l), P(B,',BH.]),
and A(B;) are all < t,.;, then a Ripple Carry Adder
will suffice for the block, because those values will all be
less than the corresponding values for block B;;. le.,
if La(B;), trytr41,...,ts are all on or below the line
t =c+ (t(s41) — (s + 1)) (the line of slope 1 that passes
through the point ((s + 1),(s41))), then all of the delays
associated with B; will be < t(s41)-

We now denote by ¢,,...,#; the delays of the in-
put bits in B;. Also, we assume that for Carry-Skip
skips can always be completed (for any size block)
by time 1 4+ max(L4(B;), max (t;)). (This assump-

r{JSs

tion is reasonable for small blocks and blocks where
La(B;) >> max (t;)). Then for Carry-Skip blocks we
7‘_]_3

have that:
o 1(B:) = max (t; +s — );

e G(B;, B;j) is relevant only for j i+ 1, and
G(Bi, Biy1) = max (tj +s—3j+1)+0.75 (the 0.75
rSISs

is for an OR or NOT/NOR to combine generated
and skipped carries between blocks);

e P(B;, B;) is relevant only for j i+ 1, and
P(B;, B;11) = La(B;) + 1 (since blocks are of size
at least 1);

o A(B;) = max(La(B;)+s—r, max (t; + s — j));
r<j<s
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o L4(By) = 0 (assuming no carry in to the adder,
otherwise the latest time at which it can arrive);
and

. 54(3{) = ma.X(G(B;-l,B;),P(B,'_l,B;)) for i #

Observation 2.2 For a Carry-Skip Block B; over
columns r,...,s as defined above, a necessary condi-
tion to minimize the maximum of I(B;), G(B;, Bi41),
P(B;, Bi11), and A(B;) is that b; (given 7 and the value
of LA(B,-‘S) be such that:

e P(B;i,Bi41) = La(B;)+ 1, and
. G(B;,B,'.H) < P(B,',B,-+1) +1= LA(B,‘) + 2.

Otherwise either B; could be a Ripple Carry block or B;
could be split into two blocks B;: and B!’ that combined
have simpler structure than B; (since the skip trees are
smaller) and achieve delays:

e G(By, Bin) < G(Bj, Bit1) and G(Bjn,Biy1) <
G(Bi, Bi41) (because B; and B;» include (disjoint)
subranges of B;;

° P(Bil,B;u) = P(B,‘,Bi+1); and

® P(Bin,Biy1) = P(Bi, Biy1) + 1 < G(Bi, Bit1) (by
assumption).

(Note that one of B;: and B! could be a Ripple Carry
block).

Observation 2.3 For a Hybrid Adder with Ripple-
Carry and Carry-Skip blocks as defined above, a suffi-
cient condition for the maximum of I(B;), G(B;, Bi41),
P(B;, Bi1+1), and A(B;) over all blocks to be less than
some limit d is that the size b; of any Carry-Skip block B;
be such that G(B;, Biy1) > P(B;,B;y1)—1 = LA‘SB,')
unless it would require that I(B;) > d or A(B;) > d, i
which case b; is set as large as possible subject to those
constraints.

Figure 2 shows an optimal Hybrid Adder design for
using 1 level of Carry-Skip blocks and a single Carry Se-
lect block That adds two 62-bit numbers whose signals
are all available at time 0 in total time equivalent to 12.5
XOR delays. Figure 3 shows the output delays of the
same adder when applied to the profile of Figure 1, giv-
ing a maximum output delay of 23.5 XOR delays. Thus
when appled to the profile the latest output is later by
the delay of the latest input signal, even though many
of the signals arrive significantly earlier.

Now we use the formulas above to construct a Hybrid
Adder for the profile in Figure 1 using Ripple Carry
and Carry Skip blocks. First we note that based on the
input signal profile vector, Observation 2.1 applies to
columns 1,...,5 and nowhere else (column 0 has only
one bit as input). Thus, we can set By as a Ripple-Carry
block on columns 1,...,5. Given that L4(Bg) = 0, we
then have that I(By) = 5, G(By, B1) = 5, P(BO,BI; is
not applicable, A(By) is not applicable, and L4 (B;
G(By, B1) = 5.



Optimal Uniform Input Adder
Hybrid Ripple-Carry/1-level Carry-Skip/Carry Select
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Figure 2: The delays of the optimal 62-bit Hybrid Adder

for uniform inputs using 1-level Carry-Skip and one
Carry-Select block.

Final Adder Input Profile
Optimal I-level Carry-Skip/Carry Select for Uniform Input
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Figure 3: The delays of the optimal 62-bit Hybrid Adder
for uniform inputs using I-level Carry-Skip and one
Carry-Select block when applied to the 32-bit Latest-
Fewest TDM PPRT output profile.

Since Observation 2.1 does not apply past column 5,
we will use Carry-Skip blocks for the later columns. Our
approach is to first construct a preliminary design usin
block sizes based exclusively on the values G(B;, Bit1
and P(B;, Bit+1). The maximum of those values will
give us a lower bound on the delay d of the latest output
signal of the optimal Hybrid Adder that uses Ripple-
Carry and Carry-Skip blocks. An upper bound will be
provided by the maximum I(B;) and A(B;) values for
that same design. We can then use binary search on
the possible values of d to find the smallest achievable
value.

For B;, we have already seen that L4(B:) = 5. Us-
ing the formulas above, we have that the minimum pos-
sible value of P(By, By) is LAgbBl) 4+ 1 = 6. By Ob-
servations 2.2 and 2.3 we use block size b; such that
LA(Bl) < G(Bi,BH_l) < LA(Bl) +2="T1e., b =2
By repeated application of the principles in the observa-
tions we get the preliminary design and delays depicted
in Figure 4. By using binary search on the values be-
tween the lower bound of 19.5 (P(Bi2, B13)+1) and the
upper bound of 25.5 (A(Bi2) we obtain the design in
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Figure 5, with latest output at 23.5 XOR delays. Thus
we have matched the performance of the adder for uni-
form inputs that used a Carry-Select block with a much
simpler adder.

Preliminary Final Adder Design
Hybrid Ripple-Carry/1-level Carry-Skip
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Figure 4: The delays of the preliminary 62-bit Hybrid
Adder using Ripple-Carry and 1-level Carry-Skip blocks
for the 82-bit Latest-Fewest TDM PPRT output profile.

Optimal Final Adder Design
Hybrid Ripple-Carry/1-level Carry-Skip
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Figure b: The delays of the optimal 62-bit Hybrid Adder
using Ripple-Carry and 1-level Carry-Skip blocks for the
32-bit Latest-Fewest TDM PPRT output profile.

This design is optimal among all Hybrid Adders that
use only Ripple-Carry and 1-level Carry-Skip blocks,
but can be easily improved. One simple change would be
to add a second skip block over columns 59 through 62.
This would reduce the maximum output delay to 22.5.
Similarly, the principles described here can be appled to
multi-level Carry-Skip blocks, Carry-Lookahead blocks,
and Carry Select blocks. It is this last possibility that
we will now examine.

The terms defined above can be easily applied to
Carry-Select blocks. For this analysis we increase the
A() and G() values of the previous block by 2 to allow
for the increased delay caused by the large fan-out of
the Jast NOR gate[11]. The delays within the Carry Se-
lect block are based on the underlying Carry-Skip sub-
blocks.

The design approach is similar to the one used pre-
viously. We know that the Carry-Select block will be-



Optimal Final Adder Design
Hybrid Ripple-Carry/1-level Carry-Skip/Carry Select
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Figure 6: The delays of the optimal 62-bit Hybrid Adder
using Ripple-Carry, 1-level Carry-Skip, and one Carry
Select blocks for the 32-bit Latest-Fewest TDM PPRT
output profile.

gin immediately following one of the Carry-Skip blocks,
and that any optimal Hybrid Adder that uses a Carry-
Select block must perform at least as well as the opti-
mal Ripple-Carry/1-level Select solution. Thus we try
to achive progressively smaller delay bounds beginning
with the optimal result from the design of Figure 5. As
thebound is decreased some of the Carry-Skip blocks
may need to be changed to remain in compliance with
it, bu the Carry-Select block will always begin imme-
diately following an exisiting block, so only a limited
search is necessary. The optimal design is shown in Fig-
ure 6, and achieves maximum delay of 20.5 equivalent
XORs. Thus we have achieved better than 12.5% im-
provement over the original design for uniform signal
profile.

3 Conclusions

We have shown that fast adder designs based on uni-
form signal delay profiles can give poor results when
used as the final adder in a parallel multiplier. The
optimal final adder is instead a complex hybrid struc-
ture containing blocks that may consist of a variety of
different adder designs. We have given a generalized
model for evaluating the delays associated with each
block of such a Hybrid Adder and applied it to sig-
nal profiles corresponding to the final adder inputs of a
parallel multiplier using optimal TDM PPRT circuits.
We have shown how to design an optimal Hybrid Adder
made up of blocks of Ripple-Carry, Carry-Skip (1-level),
and Carry-Select Adders using an approach that eas-
ily extends to blocks made up of other adders, such as
multi-level Carry-Skip, Carry-Lookahead, and Condi-
tional Sum. Our optimization method has produced an
optimal structure for the case of a 32X32-bit multiplier.
The improvement in speed is estimated to be 12.5% over
commonly used CLA scheme. This contributes roughly
to 4% of the total speed given that the final adder uses
about one third of the time used for multiplication in a
parallel multiplier.

We are presently analyzing other adder designs that
are commonly used in Final Adders, namely Carry-
Lookahead and Conditional Sum Adders. Our prelimi-
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nary results show that for the final adder problem the
standard designs yield latest output bits of delay ap-
proximately equal to the sum of the delay of the latest
input bit and the delay of the adder on a uniform input
profile. With our approach we have determined that we
can build faster adders using simpler circuitry, but we
have not yet completed optimal designs.
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