New Pipelined Architecture for DSP

Jean Noel* and Vojin G. Oklobdzija
Department of Electrical and Computer Engineering
University of California
Davis, CA 95616

Abstract

DSP’s have been applied to digital filtering,
modems, transmultiplexers, speech processing, high-
fidelity audio, and graphics. The new DSP is in the family
of the scalar fixed point Digital Signal Processor. The
type of instructions are similar to the RISC instructions.
The best aspecs of the DSP will be explained ,including
possible modifications in order to maximize performance
of DSP. This paper compares the features found in new
architectures, pointing to areas of possible improvement
in new DSPs introduced by different research laboratories
in the world. The architectural innovations and concepts
as related to the pipeline structure and its benefits are
described.

1 Improvements in the new DSP

Instructions
The new DSP has the same instructions as the
RISC. Therefore it can fully support parallelism and
overlapped arithmetic and memory access. The RISC
architecture opens the possibilities for parallel opera-
tions including conditional execution.

1.1

1.2 32-bit fixed point

The new length with 32-bit fixed point is the
right idea for a fixed point because the accuracy is
always needed in calculation operations. The 32-bit
data size instead of 16-bit is advantageous for not hav-
ing to use double-precision when accuracy is impor-
tant. This allows a lot of cycles to be saved. The DSP
uses the processor power fully with the 32-bit accu-
racy. For example, for speech processing, the DSP cal-
culates the result of an LPC (Linear Predictive Cod-
ing) or an auto-correlation of a speech signal without
using the double-precision. This is the same case for
calculing the spectrum of a speech signal. For power
consumption, the double-precision is the worst case.
Increasing of the number of bits (here 32 bits) is the

*Ecole Supérieure d'Ingénieur en Electrotechnique et Elec-
tronique, 93162 Noisy le Grand CEDEX FRANCE

1058-6393/96 $5.00 © 1996 IEEE
Proceedings of ASILOMAR-29

137

correct solution.

1.3 Architecture

The real time implementation is very important
for communication, such as the digital mobile tele-
phone. In this case, the power consumption must be
minimized. High speed systems are required for prod-
ucts like modems and digital equipment.

The new DSP consists of five majors blocks: ex-
ecution unit, address unit, program control unit, de-
coder and interrupt controller. Data is loaded to the
registers before it can be used by the right functional
unit. In fact, the use of registers allows optimization
of the pipeline. Therefore, the speed of operation is
increased. The content of the memory is loaded to a
register first and then passed to the arithmetic units
in the following cycle.

The Execution Unit uses 72-bit register to in-
crease the dynamic range with 32-bits for the base pre-
cision, 32-bits extended precision and 8-bit guard bit
part. The multiplication of 32-bit x 32-bit takes only
one cycle. The ALU has 72 bits. The Address Unit
uses two address arithmetic units AUX and AUY. In
the Program Control Unit, a loop counter, a re-
peat counter and repeat boundary registers are used.

The new DSP is based on a Harvard architec-
ture with three buses: two for the data X BUS and
Y BUS and one bus for the DMA. D BUS and PC
BUS are used to transfer the instructions and P BUS
for the access to the memory mapped periphical reg-
isters. For the external memory, the new DSP uses a
Von Neuman structure.

1.4 Programming

The programming of the new DSP is in high-
level language, the same as for a RISC processor us-
ing RISC type instructions. Versatility and high-speed
are excellent qualities of the new DSP. The combina-
tion of a RISC processor and a DSP gives the DSP

great possibilities, but more research can ameliorate
the structure of the new DSP.

2 New Architectures for DSP

2.1 Memory configuration

The Harvard architecture ...

X.Y-] PC-BUS
YBUS| prOGRAM

MEMORY

ADDRESS
UNIT

D-BUS

CONTRO!
UNIT

rf:—‘ﬁ

INSTRUCTION
DELAY BUFFER

:

ARITHMETIC UNIT

i

1/0- BUFFER

D-BUS

X.Y-BUS PIPELINE|

CTRL

DATA
MEMORY

D-BUS

Iy

Figure 1: Harvard architecture.

2.2 Device coding

This part explains the two main codings: time
stationary and data stationary. The first coding
means that each line of code specifies what each piece
of hardware does in one instruction cycle. The second
one is used in the more advanced Bell Labs device,
the WE DSP32[4], where a multiply, accumulate, and
write instructions are specified in one line, even though
it takes several cycles to execute. Then there are only
two load data registers instead of eight as for RISC in-
structions for each bus. The immediate displacement
is not available for data load. It is useful to increase
this number to allow for data independence and to
avoid pipeline hazards.

2.3 Pipeline

This part introduces different structures for the
optimization of DSP pipeline. In fact, there are two
major problems with pipelined architecture. First,
when a branch occurs and second when an interrupt
breaks the pipeline. Data dependencies and branch in-
structions are two major impediments to performance.
Pipeline hazards decrease the calculation power of the
DSP. However, several methods exist that can aleviate
the branch penalty.

First, the static prediction method predict the
branch decisions. The compiler uses different data sets
and calculates the branch percentage for each branch
instruction. By simulating this technique, the average

138

branch accuracy of 83 percent can be achieved [5].

Dynamic prediction is one solution that can
resolve this problem. This means that for each branch
instruction in the program, the hardware will increase
or decrease the value of the prediction whether the
predict branch is taken or not. The new DSP uses
this mechanisnm to decrease the branch penalty.

On the other hand, the delayed branch method
has been used successfully on several machines (RISC,
IBM 801 and MIPS) with only one-cycle branch delay.

One other solution, for preventing pipeline in-
terruption, is to share it with different programs or
tasks. In this case, there is no dependency between
the instructions, and the branch cost is reduced. The
hardware has enough cycles to fetch the instructions in
the subroutine. For example, with a 5-stage pipeline,
independence in instructions is the best method when
the pipeline is shared between 5 tasks.

Branch bypass and multiple prefetch are
used to eliminate the need to predict which path will
be taken after a branch. The DSP can fetch both paths
and throw away the incorrect one when the branch is
resolved. The simulation shows that the performance
increases proportional to /7, where j levels of unre-
solved branches exist. However, this technique is very
hardware consuming.

3 Research

The purpose of this research is to increase the
calculation power of a DSP through a new structure
for the pipeline. The pipeline structure of the model
architecture used in the research is a modified version
of the popular load/store reduced instruction set com-
puter, called DLX [2], utilizing a fixed point structure.
3.1 Architectural model

To describe the various models, model architec-
ture has been chosen with the following features:

e a load/store reduced instruction set;

e an easily decoded instruction set having total of
15 instructions;

®

four-stage pipeline: instruction fetch, instruction
decode/register fetch, execution/memory access,
and write back;

register file with sixteen 32-bit registers;

16-bit address bus and 32-bit data bus;

o three non-pipelined functional units: arithmetic
logic, complex multiply/divide, and memory ac-

cess;
mﬁﬂ

{

Instruction
Fetch
Unit

ok a—

Program
Memory

Register file
16 32-bit registers

Decode:
Unit

L

Menory |

Execute

Unit
Meawory 2

Figure 2: Block diagram of a pipelined architecture
with multiple functional units.

3.2 DSP instruction set

The DSP instructions use complex representa-
tion to make calculation directly with complex data.
A lot of calculations need to use complex data for ex-
ample calculating the spectrum of a speech signal with

FFT.

The result of the use of instructions with com-
plex calculation mode is to optimize the number of
calculations, for exemple: the calculation for a spec-
trum of a voice signal with the FFT. The FFT uses
a large number of calculations with complex numbers,
so the complex mode for the calculation permits a de-
crease in the numbers of time-cycle. The speed of the
DSP is increased.

3.3 The Tomasulo’s Algorithm

Tomasulo’s algorithm [9] used by IBM in
1967 demonstrated how to resolve data dependen-
cies (or out-of-order instruction issue) with multiple
functional units. The reservation station (RS)
could be associated to optimize the problem of func-
tional units allocations. An extension to the Toma-
sulo’s algorithm is the Register Renaming Unit
(RRU) [11] [12]. This is a hardware mechanism that
resolves dependencies dynamically and, at the same
time, guarantees precise interrupts.

3.4 Register Renaming Unit

Most of the cases, registers can not be overwrit-
ten until all prior instructions which reference the old
value of the register have accessed that value. For a

139

fixed point format DSP it is possible to implement a
new version of the algorithm invented by Tomasulo for
the IBM System/360 Model 91 [11] : Register Renam-
ing Unit (RRU).

The organization that was adopted is illustrated
in Fig 3. RO and R1 are the rename registers. They
contain an opcode field, a target-register field, and two
source-register fields. The map table contains the cor-
respondence of an architectural register to a physical
register.

OP T SI S2 OPT SI 2
IADlis]Z]l]Ro[sTlal I |Rl

V1] I l - FREE LIST -

Map Table »—{12113[14[15'16|n|m|19

LT

PTRQ

e [TTTTT]
0 O O

busy hypass OLQ

%E

I

Figure 3: Register-renaming structure

The free list (F1) contains a list of currently unas-
signed physical registers. In the initial state is initial-
ized to identify and the renaming registers are placed
on the free list. Since there are 20 physical registers,
the FL can contain a maximum of eight entries. The
Fl is maintain as a circular queue and uses a head
pointer and a tail pointer.

The pending-target return queue (PTRQ) con-
tains those physical registers which are being used by
instructions in the decode phases, and will become free
as soon as these instructions pass decode. It also has
a maximum size of 8. Like the FL, it is maintained as
a circular queue with head and tail pointers. It also
has an additional pointer. The release pointer keeps
register tags on the PTRQ until all prior arithmetic
instructions which could have required the data in the
corresponding physical register have decoded.

The BUSY and BYPASS registers contain the
physical register number of the instruction currently
in the first and second execution stages. If any reg-
ister field of an instruction in decode compares with
the BUSY register, it is prevented from decoding. If a
source field compares with the BYPASS register, the
data is read from the execution pipeline and not from
the register file.

Original stream Rename table Free Renamed PTRQ
head stream

ADD R1,R2 —>R3 (1,1),(2,2), (33) 12 R1,R2 R3

ST R3 (3,3) 12 R3

LD R3 (3,3) 12 PR12 3

MUL R1,R3 —>R6 (1,1), (3,12), (6,6) 13 R1, R12, R6

SUB R2,R6 =>R2 (2,2), (6,6), (2,2) 13 R2, R6, R2

LD R3 (3,12) 13 PR3 12

Table 1: Register renaming.

The outstanding load queue (OLQ) contains the
physical register number of the next load whose data
will return from the cache. It stops instructions from
decoding if they require data which has nit returned
from the data cache.

4 Conclusion

The future DSP must calculate with a high speed
while resolving the problems of dependency dynami-
cally. In order to optimize the different buses and funec-
tional units, some research laboratories are currently
attempting to design a DSP with a reconfigurable ar-
chitecture. The time required to reconfigur the DSP is
a problem. Those researchers have to develop a DSP
with a high capacity of reconfiguration. The high per-
formance DSP processor in the future will be able to
change the hardware architecture for each specific ap-
plication.

References

[1] David J. Lilja, ” Reducing the Branch Penalty
in Pipelined Processors,” in IEEE, pp. 47-55, July
1988.

[2] Chia-Jiu Wang, Frank Emmett, ”Implement-
ing Precise Interruptions in Pipelined RISC Proces-
sors,” in IEEE Micro, pp. 36-43, August 1993.

[3] Rolf Ernst, ”Long Pipelines in Single-Chip
Digital Signal Processors— Concepts and Case Study,”
in IEEE Transactions on Circuits and Systems, vol.
38, pp. 100-108, January 1991.

[4] Edward A. Lee, David G. Messerschmitt,
”Pipeline Interleaved Programmable DSP’s: Architec-
ture,” in IEEE Transactions on Acoustics, Speech, and

140

Signal Processing, vol. 35, September 1987.

[5] Scott McFarling, John Hennessy, ” Reducing
the Cost of Branches,” in IEEE, 1986.

[6] Gurindar S. Sohi, ”Instruction Issue Logic for
High-Performance, Interruptible, Multiple Functional
Unit, Pipelined Computers,” in IEEE Transactions on
Computers, vol. 39, March 1990.

[7] G. F. Grohosky, "Machine Organization of
the IBM Risc System /6000 processor,” in IBM Jour-
nal of Research and Development, Vol.34, Nol, pp.37,
January 1990.

[8] J. Cocke, G. F. Grohosky, and V. G. Oklob-
dzija, ”Instruction Control Mechanism for a Comput-
ing System with Register Renaming, MAP Table and
Queues Indicating Available Registers,” US Patent No
4,992,938. Issued: February 12, 1991.

[9] R.M. Tomasulo, ” An efficient algorithm for
exploiting multiple arithmetic units,” IBM J. Res.
Develop., pp. 25-33, Jan. 1967.

[10] S. Welss and J.E.Smith, ”Instruction is-
sue logic in pipelined supercomputers,” IEEE Trans.
Comput., vol. C-33, pp. 1013-1022, Nov. 1984.

[11] G. F. Grohosky, ”Machine Organization of
the IBM Risc System /6000 processor,” in IBM Jour-
nal of Research and Development, Vol.34, Nol, pp.37,
January 1990.

[12] J. Cocke, G. F. Grohosky, and V. G. Oklob-
dzija, ”Instruction Control Mechanism for a Comput-
ing System with Register Renaming, MAP Table and
Queues Indicating Available Registers,” US Patent No
4,992,938. Issued: February 12, 1991.

