Evaluation of Booth’s Algorithm for Implementation in Parallel
| Multiplhiers

Pascal Bonatto* and Vojin G. Oklobdzija
Department of Electrical and Computer Engineering
University of California
Davis, CA 95616

‘Abstract

As it has been introduced by Vojin Oklobzija and
David Villeger in [1], the Booth encoding technique, used
in parallel multipliers seems to be obsolete because of the

“improvement of compression trees using 4:2 compressors.

This artcicle compares the two techniques in the case of
different lengths of multipliers, and it appears that the
reduction bit with 4:2 compressors allows a higher speed
and a highly regular layout since the schematic is simple
and repetitive.

Introduction

Because multiplication is a slow operation, it is
on the critical path of microprocessors, especially of
DSPs, which compute integer and floating point op-
erations in parallel within one cycle. A multiplica-
tion can be divided in three parts: The partial prod-
ucts generation, the summation network (or the col-
umn compression tree), and-the final carry propagate
adder. Since the delay of a multiplier depends on the
number of partial products to be added, it is attractive
to use Booth’s Algorithm {2], because it reduces it by
almost a factor two, but also generates some extra-bits
for the sign extension and the 2’s complementation.
In this paper, we will compare Booth encoding with
the use of 4:2 compressors to achieve the same reduc-
tion in the number of partial products.

Number representation

Since multiplication is more complicated with 2’s
complement, the floating point standard uses signed-
magnitude representation. This allows the sign of the
product to be computed as the XOR of the signs of the
multiplier and the multiplicand. Thus we only need
to compare the different algorithms for the case of a

*Ecole Supérieure d'Ingénieur en Electrotechnique et Elec-
tronique, 93162 Noisy le Grand CEDEX FRANCE

1058-6393/96 $5.00 © 1996 IEEE
Proceedings of ASILOMAR-29

608

positive multiplier and a positive multiplicand.

Booth encoding
The Booth2 Algorithm

Since Booth encoding creates a smaller number
of partial products, and therefore allows their summa-
tion to be faster, it is often used in the implementa-
tion of parallel multipliers. By grouping the bits of the
multiplier into triplets and selecting the partial prod-
ucts from the set 0,4M, +2M, -M, -2M, where M is
the multiplicand, the number of partial products can
be reduced from N to |N—2+2|- {where N is the operand
length). The rules of this algorithm, which have been
improved by G. W. Bewick (solving the problem of
the sign extension [4]) are summarised in Figure 1.

= o -
gracs rex

Partid Prodict Seleeion Tble
‘Mskigtirbits_|_Selection s ; 5
o © (o 4 cocies fomm the Sétestion Tuble)
o1 * Matigtiown
010 + Mikigleand.
o 2 Melipicuod =1 b nequive
10 2 Mulipiiousd ko)
w01 - Mukiicund
110 Maliglcand
Tl o

Figure 1: Ezample of 16-bit multiplication
Booth2 Algorithm, from [4].

using

This method can be generalized, grouping the
bits of the multiplier by 4, 5, or more. Then the diffi-
culty will be to compile +3M , -3M, +5M, -5M, since
summing or substracting 4M with M can generate a
carry propagation, rending this scheme much slower
than the Booth2 Algorithm where 2M is obtained by

shifting the multiplicand one bit to the left.

Critical path

Figure 2 shows the critical path delay of a N-bit
multiplier that uses Booth encoding as well as 4:2 com-
pressors and full adders for bit compression, using the
fact that the critical path of a 4:2 compressor is 3 XOR
[1] (The table does not include the Booth encoding de-

lay).

Nb of Bits Delay in XOR Nb of Bits Delay in XOR Nb of Bits Delay in XOR
4 1(FAE=2X0R 10 2(4:2)=6XOR 31 3(4:2=YXOR
5 1{FA)=2XOR 14 2(4:2)=6XOR 32 34241 FA)=11XOR
6 1{4:2)=3XOR 15 2(4:2)=6XOR. 33 34:2+1 FA)=11XOR
7 1(4:2)=3XOR 16 2(4:2)+1{FA)=8XOR 62 4(4:2)=12XOR
L) 1(4:2)+1(FA)=5XOR. 17 2(4:2)+1(FA)=8XOR 63 4(4:2)=12XOR
9 14:2+1(FA)=SXOR 30 3@:2)=9X0R 64 44:2)+1(FA)=14XOR

Figure 2: Critical paths of a multiplier using Booth?2
Algoritm.

Using 4:2 compressors

The 4:2 compressors

The use of 4:2 compressors reduces the number
of partial products to be added by one half. This
idea was first introduced by A. Weinberger [5], and
improoved by V. G. Oklobdzija and D. Villeger [1].
Figure 3 shows how a sequence of 4:2 compressors is
used to achieve this result, and Figure 4 shows their
application in the partial products reduction for 8-bit
multiplication.

EEX]

OCED
Coat in Coumt} 7B K i

(X
i Cout Cin

T

Figure 3: sequence of 4:2 compressors.

>

0fo|@|® L X
oleje/e (30
e
.f M First Level of
e
0 oo 4:2 Compressors
0 LJCIL S
[] o0/e
(2] e o0
olo
olo Second Level of
{2] 422 Compresao
o0
0000000 O0OGCOIOOOBDEO® Finel output, going
0000OOOBOGOIOCES to the carry propagate adder

Figure 4: Reduction of 8 partial products using 4:2
compressors

609

Critical path

Figure 5 shows the critical path of a N-bit mul-
tiplier using 4:2 compressors and full adders to reduce
the number of partial products. This table does not
include the delays of the AND gates which generate
the partial products.

NbofBits_| Delay in XOR Nb of Bits Delay in XOR Nb of Bits Delay in XOR
4 14:2)=3X0R 1 3(4:2)=9X0R 33 442+ FA=14XOR
s 1(42)+1FA)=SXOR 16 3U2)YXOR 34 44:2)+1 FA)=14XOR
6 2(4:2)=6X0R 17 3@ PAIXOR 3s S(4:D=15XOR
] 2A4:2)=6XOR 18 IE2HFARTIXOR 64 3¢4:2)=1SXOR
9 204:2)+1(FARRXOR 19 44:2=12X0R 65 542+ FA)I TXOR
10 204:2)+H(FAX=RXOR 32 4(4:2)=12X0R 66 2421+ FA)=1 TXOR

Figure 5: Critical paths of a multiplier using 4:2 com-
pressors.

Booth encoding versus 4:2 compressors

As we said before, a single row of 4:2 compressors
can achieve a better reduction of the number of par-
tial products than the Booth2 Algorithm (4 versus

]L"g-_?l‘ In this part, we will look at the schemes shown
in Figure 6 and compare the speed improvment of the
two methods. Figure 7 graphs the critical path delays
of a multiplier against the length of the multiplicands
when using Booth’s Algorithm and when using only
4:2 compressors. These delays do not include the time
for Booth Encoding (for the Booth Multiplier) or for
the AND gate (that generates each partial product in
the multiplier using only 4:2 compressors).

2 multiplicands
Length : N

2 multiplicands
Length: N

VERSUS

N Partiat Products.

Keucing the number Reducing the number
of Partial Producs of Partial Producs
with 4:2 Compressors with 4:2 Compressors

102 only pnes.

adder

Figure 6: The two schemes to be compared.

102 only ooes,

finat carry propagate
T

The delay using Booth Encoding is universally
smaller. However, the difference in the critical path
delays for the two methods is minimum at one XOR
gate delay when the length of the operands is a power
of 2, and two XOR gate delays when the length of
the operands is 2N 4+ 1. In both of those cases the
Booth Algorithm implementation will certainly be

8 e
1% -/
& 14
R b v 7/
ad Ped
g 10 v va
a 7
R
b
2
°
6 E 10 15 20 25 S0 3IT 4C 5 £0 BE 30 &5 70
av cf bRt
[_""‘x\wvn wrwkRgE T 7Y 89 wmmg

Figure 7: Critical paths of a multiplierdepending on
the operands’ length.

slower since the delay of the Booth encoder is higher
than 1 AND gate and 2 XOR gates. In fact, to prove
that using the Booth Algorithm is worse than using
only 4:2 compressors, we must look at a case where the
difference in the critical path delays is maximized at
3 XOR delays. Therefore, we will examine the case of
a 24-bit multiplier and compare the delays of the two
methods for achieving the first reduction of the num-
ber of partial products by a half. The tools we used
to complete this are Viewdraw and Epoch (to com-
pile the design and analyze the layout and the critical
paths).

Example for a 24-bit multiplier

The design of the parts of 24-bit multipliers to
generate the partial products and reduce their num-
ber by half (using Booth’s Algorithm and using only
4:2 compressors) was compiled using the technology
moslu3mlp from Epoch library. The average temper-
ature was assumed to be 25C, with a 5 Volt power
supply and an external capacity load of 50 fF added
at each output of the design.
The results obtained from the timing analysis of the
layouts are summarized in Figure 8.

BOOTH ALGORITHM

USE OF 4:2 COMPRESSORS

2 multiplicands
Length: N

2 multiplicands
Length: N
Partial product

generator

Booth encoder

-
First stage of 4:2
N72 Partial Products

631 ns 4.85ns

Figure 8: delays of the schemes.

610

The scheme involving the Booth encoding was
found to be slower than the one involving the 4:2 com-
pressors. The difference between the two delays in the
simulation is 1.46ns. This is the result of a number
of factors. First, the use of 4:2 compressors allows a
higher regularity of the layout which mean less wire
and improved speed compared to the Booth Encoder
which is more irregular and as a result more difficult to
route. Additionally, the Booth Encoding must choose
between the partial product M and 2M; therefore the
outputs of the partial product selector (selecting the
partial product in the set M, 2M) must be able to drive
2N + 1 elementary gates, which require some buffers.
This increases the power consumption and also the de-
lays. On the other hand, the Booth algorithm requires
less hardware than using 4:2 compressors, which is an
advantage, regarding to the price of chip.

Conclusion

We have schown in this paper that the use of
4:2 compressors can achieve in the worst case, the
same reduction of the number of partial products as
Booth’s Algorithm in less time. The majority of mul-
tipliers designed today use Booth’s Algorithm, which
may not be the best choice. In the future design-
ers should consider using 4:2 compressors instead of
Booth encoding when designing multipliers for high-
speed microprocessors. Moreover, it has been proved
that the use of higher order compressors (9:2 for ex-
ample...) would result in greater increases in speed

1.

References

[1] V. G. Oklobdzija, D. Villeger, ” Analysis of
Booth Encoding Efficiency in Parallel Multipliers Us-
ing Compressors for Reduction of Partail Products”.

[2] A. D. Booth, ” A signed Binary Multiplica-
tion Technique” , Quaterly J. Mechan. Appl. Math.,
Vol. 1V, 1951.

[3] P. Song, G.de Michelli, ”Circuit and Architec-
ture Trade-offs for High Speed Multiplication”, IEEE
Journal of Solid State Circuits, Vol. 26, No. 9 ,
September 1991.

[4] Gary W. Bewick, ” Fast Multiplication : Al-
gorithms and Implementation”, Dissertation for the
Degree of Doctor in Philosophy, February 1994.

[5] A. Weinberger, 4:2 carry-save adder module”,
IBM tech. Disclosure Bulletin, Vol. 23, Jan. 1981.

