International Journal of High Speed Computing, Vol. 7, No. 3 (1995) 327-349
© World Scientific Publishing Company

SIMULATIONS OF INTERACTING MANY BODY SYSTEMS
USING p4

R. T. SCALETTAR, K. J. RUNGE and J. CORREA

Physics Department
University of California, Davis, CA 95616, USA
E-mail: runge@redhook.llnl.gov

P. LEE and V. OKLOBDZIJA

Department of Electrical and Computer Engineering
University of California, Davis, CA 95616, USA

J. L. VUIJIC

Department of Nuclear Engineering
University of California, Berkeley, CA 94720, USA

Received April 6, 1994

ABSTRACT

Monte Carlo (MC) and Molecular Dynamics (MD) simulations are powerful tools
for understanding the low temperature properties of systems of interacting elec-
trons and phonons in a solid, including the phenomena of magnetism and super-
conductivity. When mobile electrons are studied, these simulations are currently
limited to a few hundred particles, and also largely to “clean” systems where no
defects are present. Therefore, more powerful machines and algorithms must be
used to address many of the most important issues in the field. In this paper, we
present results from using some simple implementations of the p4 parallel pro-
gramming system on a variety of parallel architectures to conduct MC and MD
simulations of one and two dimensional electron-phonon models.

Keywords: Parallel monte carlo methods, message passing, p4

1. Introduction. Implementing parallel computations in the most in-
teresting sense involves the distribution of a single, large problem over a
network of coupled processors. Successful completion of such a calculation
requires the addressing of an interconnected set of questions concerning the
application, as well as computer science issues of sharing memory, prop-
erly sequencing tasks, passing messages, etc. Such an approach necessarily
requires significant rewriting of conventional serial codes, with the attendant

327

328 Scalettar et al.

time required to debug them. For many applications, this process, though
challenging, is unavoidable.

On the other hand, many applications do not need the full power of
the parallel machine for a single run, but rather, their complexity resides
in the necessity to conduct a large number of separate calculations. Most
Monte Carlo applications fall naturally into this class, since statistically
independent configurations are needed which can be generated by launch-
ing simultaneous, non-communicating copies of the code on each node with
different random number seeds. Furthermore, it is frequently necessary to
conduct a series of runs using different parameter values. For example, if we
want to sweep the temperature down through the critical point of a phase
transition, we can use more than one node and assign different temperature
value to each node. Finally, in the field of condensed matter physics, there is
increasing interest in the role of defects in interacting phonon and electron
models. Here it is necessary to conduct a disorder average over hundreds or
thousands of independent realizations.

The p4 parallel programming system is a library of routines [1] that
enables one to write portable, machine-independent parallel code that can
be used on a variety of parallel computers. These can range from a cluster of
UNIX workstations to massively parallel supercomputers. The p4 package
is available at ftp://ftp.mcs.anl.gov/pub/p4. For our work we use the
processor to processor message passing and timing library routines which p4
provides. However, there are a number of additional routines and interfaces
p4 contains that provide increased functionality. Among the six different
environments (HP, Sparc, AIX, Linux, iPSC/860, and Meiko CS-2) in which
we have installed p4, we find in five (there was some difficulty with the HP)
that the compilation, installation, and usage is fairly straight forward and
easy to implement.

In this paper we describe simulations using p4 with both types of par-
allelization mentioned above. In the former more challenging case of dis-
tributing a single run over many CPUs, we have chosen to study a classical
model of interacting lattice vibrations using the Molecular Dynamics algo-
rithm. We have written codes using the p4 library to produce portable
parallelized programs which can run on a variety of machines and clusters.
In the latter case of independent computations, we study by the Quantum
Monte Carlo (QMC) algorithm the two-dimensional Hubbard Hamiltonian,
a model which provides a computational challenge at the forefront of con-
densed matter physics. The essential algorithmic difference between the two
problems is that the QMC problem involves an energy which couples degrees
of freedom to each other in a highly complicated and nonlocal way. Know-
ledge of the state of the entire lattice is required to evaluate the change in
energy of the system when a single lattice site is altered, because the energy
is related to a determinant of a matrix involving all lattice sites. Further-

Simulations of Interacting Many Body Systems Using p{ 329

more, these QMC codes are rapidly evolving. This discourages efforts to
write a parallelized code if the process involves a lot of machine specific
details. Because of the complexity of these QMC computations, we use an
approach which provides a way to accomplish simple parallelization with
the minimum possible rewriting (in some cases none) of application codes.
In particular, we describe a set of simple software tools we have developed
which enable us to easily submit a set of independent Monte Carlo (or other)
simulations to a parallel computer or meta-computer. The software will also
perform the necessary data analysis of a rather general set of typical data
files, averaging the data returned from individual nodes automatically.

The remainder of this paper is organized as follows: In Section 2 we
review some of the basic ideas behind the models we are studying and key
features of the Monte Carlo (MC) and Molecular Dynamics (MD) algorithms
which have been used in the past for serial codes. Section 3 describes briefly
the hardware platforms on which we test parallelized algorithms. Section 4
summarizes some features of p4 and gives some examples of typical calls
to p4 library routines. Section 5 contains details of our first application: a
distributed MD calculation of interacting lattice vibrations. Section 6 con-
tains details of our second application: a Quantum MC calculation of an
interacting electron model in which independent simulations are submitted
to different nodes, differing either in the random number seeds or in the
disorder potentials, and the software tools we have written for job submis-
sion and data averaging. Section 7 concludes with some brief summarizing
remarks.

2. Review of molecular dynamics and Monte Carlo.

Molecular Dynamics for a Lattice Vibration Model: In condensed
matter physics one is interested in calculating the properties of the interact-
ing electrons and ions in a crystal. Since this is a tremendously complicated
task, simple models are introduced to focus on the relevant degrees of free-
dom for particular problems. In order to understand the elastic and thermal
properties of many crystals [2], for example, it is often sufficient to consider
an energy function of the form,

) =2 Ipilt/ms + 3 Vi, x3).

Here the first term is the kinetic energy of a set of ions moving with momen-
tum p;, while the second term, V, describes the potential energy between
ions i, j at positions x;, x;. The electron degrees of freedom enter only
indirectly, through the ion-ion potential V. If V' is quadratic in the ionic co-
ordinates, this model can be solved analytically, and the resulting wave-like
excitations, termed “phonons”, propagate independently in the crystal. For

330 Scalettar et al.

more realistic forms of V', the model is insoluble analytically, and therefore
must be tackled by numerical means.

One such numerical approach is “Molecular Dynamics” in which Hamil-
ton’s equations of motion

dpi _ _OH
dt Ix;
(2) dx,- i oH
dt op;

are integrated numerically by discretizing time and employing Runge-Kutta,
leap-frog, or some equivalent finite difference approach [3]. A central as-
sumption of MD is the “ergodic hypothesis” [4], which states that averaging
observables over the system’s evolution in time is equivalent to other averag-
ing formalisms, such as the canonical ensemble which weighs configurations
according to their Boltzmann factors exp[—3H], where 8 is inversely pro-
portional to the system temperature 7'

In this paper, we study Eq. (1) with a potential V that has two pieces.
The first consists of quadratic attractive pieces between neighboring masses
only. If this were the only term in V, then when the coordinates are dis-
tributed on a set of nodes, very little data would need to be passed, only
the positions of the masses at the boundaries. We report results for such
a situation of very limited connectivity between the degrees of freedom.
However, we are in fact primarily interested in a situation where a second,
repulsive term in V', which is rather long ranged, is also present. In this case
many more data need to be passed since the evolution of masses assigned to
a particular node is influenced by the positions of a much larger number of
masses on other nodes.

Although one can think about the model as a set of coupled masses and
springs, the physics we are ultimately interested in is a description of the
motion of flux lines penetrating into a type-II superconductor [5]. In order
to do this, one chooses the first term in V so that it organizes the system
into lines of attracting masses that would be appropriate for some discretized
description of a set of elastic strings. It is believed that one approximate
way of thinking about how a tube of magnetic flux traverses a type-II su-
perconductor is as just such an elastic string [6]. The second term is then
chosen to have the appropriate functional form to model the repulsive force
between flux lines. Asymptotically, the force is a decaying exponential, with
a length scale of the order of, or greater than, typical inter-line spacing [6].
There are also terms which model the attraction of the flux lines with vari-
ous types of crystal defects, in particular with “point defects” which attract
just a small portion of the line, and extended “columnar defects” which at-
tract the entire line. Finally, we include a magnetic (Lorentz) force, which
pushes on the lines. Although we do not describe them here, the detailed

Simulations of Interacting Many Body Systems Using p4 331

nature of the interactions plays an important role in determining suitability
for parallelization, since non-local interactions might require significantly
greater communication overhead than shorter range ones. One set of physics
questions concerns the nature of the depinning transition as one increases
the Lorentz force. How does the structure of the defects determine the
critical value of the force required to set the flux lines in motion? This is an
important issue since whether or not the flux lines get trapped on impurities
is central to the material maintaining its superconducting properties [5].
It is remarkable that even though real systems contain roughly 1023
degrees of freedom, simulations of systems as small as a few thousand or
tens of thousands of particles can often provide quite a realistic description
of the bulk limit. An essential ingredient in using such modest size systems is
to employ techniques of “finite size scaling”, which allow one to extrapolate
to the large system limit [7]. In the simulations we will describe a typical
system size will consist of 10* — 105 masses evolving for tens of thousands of
time steps. One could study a single such system on a workstation or vector
supercomputer. However, when the interactions become more long ranged,
and disorder is present, more powerful paralle]l computers are necessary.

Quantum Monte Carlo for an Interacting Electron Model: The
simplest model of interacting electrons on a lattice is the “Hubbard Hamil-
tonian”

(3) H=—-t (CIUCJ‘U + c;'o.cig) + UZ g4 -
(if)o %

Here CL is an operator which creates an electron on site ¢ with spin o, and
cjo destroys an electron on site j with spin o. Thus the first term describes
the destruction of an electron on one site and its creation on another. In
other words, we are referring to the hopping of electrons between sites ¢ and
7. The second term describes the interaction of a spin up and spin down
electron on the same site . This term is nonzero when both occupations
are nonzero. n;, counts the number of electrons of spin ¢ on site i. For
U > 0, the Hubbard Hamiltonian has been widely used to model magnetic
transitions in transition metal oxides [8]. We will study the Hubbard model
with U < 0, a form often used to study superconductivity [9]. We will
also include some random site energies which represent imperfections in the
crystal. Our interest is in understanding how superconductivity and disorder
compete. How much disorder is necessary to destroy the superconducting
phase? Does a metallic state exist after superconductivity is destroyed, or
does the randomness immediately freeze the electrons into an insulator?

332 Scalettar et al.

The detailed description of the QMC method is given in reference (10].
In brief, the quantum mechanical problem of evaluating the partition func-
tion of Eq. (3) is replaced by an equivalent classical problem in one higher
dimension. The length of this added dimension is proportional to the in-
verse of the temperature it is desired to simulate. Typically, it is necessary
to choose 100 or so lattice sites in this “inverse temperature” direction, so
the study of an original two dimensional 8 x 8 = 64 spatial lattice of quantum
mechanical electrons requires the evolution of an 8 x 8 x 100 = 6400 classical
lattice. Unlike many classical models (one would like to simulate) which have
simple, short-ranged interactions, this equivalent classical model is charac-
terized by long-ranged non-local interactions. Thus, the primary difficulty,
besides the added dimension, is that the interactions are described by a de-
terminant of a dense full matrix involving all of the coordinates. Naturally,
this makes parallelization of a single simulation extremely challenging, since
different pieces of the lattice must communicate with one another frequently
and in a complicated manner [11]. For this reason we explore in this paper
only a more straight forward parallelization scheme that is based on disorder
or statistical averaging. We must, however, emphasize that this simplified
approach, nevertheless, presents a useful and efficient way to solve this class
of problems.

3. Testbed architectures.

Workstation Cluster: Our first test architecture consists of a set of ap-
proximately 40 HP 715 workstations linked by ethernet in the University
of California at Davis (U. C. Davis) Department of Electrical and Com-
puter Engineering. Each workstation has a HP PA-RISC 9000/715 CPU
and 10MB of RAM memory. We have also worked on smaller clusters of Sun
Sparc10 and IBM RS6000 550 workstations.

Intel IPSC860: Our second test architecture is a 32 node Intel iPSC/860
hypercube located in the College of Engineering at U. C. Davis. This ma-
chine, though now several years old, is still a rather a large—scale parallel
computer [12] with a Multiple Instruction Multiple Data (MIMD) archi-
tecture where the computation is carried out by logically independent but
cooperating processors. Each node is a 40MHz i860 processor with SMB of
RAM.

Meiko CS-2: The Meiko CS-2 at Lawrence Livermore National Laboratory
that we use is a 128 node parallel supercomputer. Each node is a 70MHz
Sparc CPU running the Solaris operating system with 64 to 128 MB of
RAM. In addition, each node has an attached 90MHz TI 8847 based vector
processing unit capable of up to 200 MFLOPS peak performance.

Simulations of Interacting Many Body Systems Using p4 333

4. Implementation of p4. As we have discussed, p4 is a set of paral-
lel programming libraries, written for C and Fortran, distributed by Argonne
National Laboratory. In this work, we mainly use the p4 C library functions.
If a problem can be parallelized, p4 can do the message passing of data be-
tween nodes in a parallel machine or between workstations in a cluster. An
important feature of p4 is its portability. In principle, if p4 is installed on
any kind of computer architecture (e.g., supercomputers, workstations, par-
allel machines), a program written using p4 will run on all of them without
changes. However in practice, there are still problems with installing p4 on
certain machines.

To picture how p4 works, imagine designating a node (or machine) as
master, and many other nodes (or machines) as slaves. The master orches-
trates and synchronizes the slaves. The slaves pass messages containing data
to neighboring slaves and after calculations are done, send all the data to
the master. The master receives these messages and completes the analysis.
This is in general how our MD simulations are implemented.

A slice of our program is shown below:

main(int argc, char *xargv) {
int start, stop, myid, timel, time2;

/* Initialize p4 system */
p4_initenv(&argc, argv);
start = p4_clock();

/* Read "process group" file */
p4_create_procgroup();

/* timel = startup time */
stop = p4_clock();
timel = stop - start;

start = p4_clock();
myid = p4_get_my_id();

/* Go do the actual work */
if (myid == 0) {

master(); /* I am master */
} else {
slave(); /* I am slave */

}

/* Wait for end of p4 processes */

334 Scalettar et al.

p4_wait_for_end();

/* time2 = time to do calculations */
stop = p4_clock();
time2 = stop - start;

The p4_initenv must always be called in the beginning of a p4
program. This function call initializes the p4 system. The function call
p4-create procgroup() reads a procgroup file that the user builds which
lists all the slave machines one wants to use. p4_getmy_id() gets current
node id number. Each machine is assigned a node number from (0—n). Tim-
ings are taken using function p4_clock() which gives time in wallclock mil-
liseconds. Within master and slave functions, commands such as p4_sendx
and p4_recvx are called to send and receive data between nodes.

For example, here is a sample of code for the simplest case that involves
a slave passing its right-most coordinate x[N] to its right neighbor slave,
and receiving the right-most coordinate of its left neighbor slave into the
variable x[0]:

/*
* Passes x[N] to RIGHT neighbor and
* receives x[0] from LEFT neighbor

*/
pass(double x[], int Right, int Left) {

double temp[1], *input;
int type=-1, size, from;

/*assign data to bufferx/
temp[0] = x[N];

/*send to Right neighbor slavex/
p4_sendx(100, Right, (char *)temp,
sizeof (temp), P4DBL);

/*clear input bufferx/
input = (double *) NULL;

/*get from Left neighbor slavex/
from = Left;
p4_recv(&type, &from,

Stmulations of Interacting Many Body Systems Using p4 335

(char *x) &input, &size);
x[0]=input [0];

/*release msg buffer from memoryx*/
p4_msg_free((char*) input);
+

There is a similar routine that passes the information in the opposite direc-
tion. These passed coordinates are then used in the finite-difference updating
via Hamilton’s equations of motion. In the case of “long ranged” interaction

—rrrrrml—rrmml T lIIlHll T IIIIlIIl T Illlml 7T
3 —
10 E~ 1D Lattice phonon model 3
- HP Workstation Cluster E

© 10% |~ k=16 —3
E £ E
e - E
% L k=2]
g 10' -
z g]
~ X k=]
E 10° 1 —
& E 3
- 2]
L 1 -

" otk g —
16 3

10_‘2 L Inl lllllllll IIIIIIII‘ lllIlLu,I 1 11141 IREEIT]

10° 10* 10® 10® 10* 10° 10°

Number of Masses

(a)

Fig. 1. The run time T' versus number of masses (problem size) N, for different numbers
of nodes k. In order to isolate features of p4 and our physics problem, rather than charac-
teristics of the individual CPU, we have normalized the data to the run time on a single
node. In each case we did 1000 MD time steps. For small N the efficiency s low, while
for large N it approaches unity. Figures 1(a), 1(b) and 1(c) show results for a cluster of
HP-715 workstations, a 32 node Intel iPSC/860, and a Meiko CS-2, respectively. In this
problem the structure of the potential V' requires communication only at the boundaries of
the sublattices put on each node. Although not obvious on the log-log plot we noticed a
definite cache overflow glitch on the Meiko at about 50,000 masses per node. At that point
the MD vectors no longer fit into the Meiko’s cache memory.

336 Scalettar et al.

(Run Time)/(1 node time)

(Run Time)/(1 node time)

107

10!

10°

1072

10° 10' 10® 10%® 10* 10%° 10°

102

10t

10°

107}

1072

A R T T TR TR I

1D Lattice phonon model

Intel iPSC/860
k = 16

T Illlllll
1 ||l|llll

L3
It
N

T IIIHII]
1 Illlllll

T llllllll
1 ll|]ll||

T rlrrml
—t
o o
t Illlllll

E

—
(@]
-2

Number of Masses

(b)

T
1

1D Lattice phonon model

Meiko CS-2

T 1 lllllll
1 1 lllllll

b
[
N

T IIIIHI
=
1l
[e2]
£
1 lllll!l]

T lll‘llll
1 IllIlHl

] llllllll

10° 10' 10% 10%® 10* 10° 10%® 107

Number of Masses
(c)

F16. 1. (Continued)

Simulations of Interacting Many Body Systems Using p4 337

discussed below, the whole body of coordinates, not just the endpoints x[1]
and x[N], must be passed to neighboring nodes at each time step.

5. Results: Interacting lattice vibrations. In our MD simulations,
we started with a conventional serial code that evolved the entire phonon
lattice on a single CPU. We then parallelized the code by dividing the lattice
into sections, and inserting appropriate p4 library commands, for example
the processor to processor message passing routines (p4_send and p4_recv)
described above. These p4 commands pass the values of the ionic positions
from processor to processor and also synchronize calculations.

In Fig. 1 we show a plot of the run time as a function of the total number
of masses for a situation when the interactions between masses is quite local.
Specifically, if there are a total of N masses and k nodes, so that n = N/k
masses are assigned to each node, only 2 of the n mass positions need to be

106 T I T T T T I T T L] T I T T T L | T 5
1D Lattice phonon model]
10° HP Workstation Cluster —
3 108 3
-~ - 105 \ 1
g 10° E
o -]
E - !
E; 10% = 10* :
J - 3
s 4 r _
:’ED 102 = 10® _%
10! - 10% —
: 101 :
100 ! ‘ [l TR T l TR B N l 1
0 5 10 15
Number of Processors
(a)

Fi1G. 2. The run time T versus number of nodes (i.e., processors) k, for different numbers
of masses N. In each case we did 1000 MD steps. For small N, a single CPU (k=1) is
optimal, while for larger N the run time T first decreases with k, then eventually saturates
as the number of computations per node becomes small. Curves lying on top of eachother
indicate those simulations are in the communication dominated regime, while for large N
the run time drops off with the ezpected 1/k dependence for the computational dominated
regime.

338 Scalettar et al.

108 TP T I T 17 l T 1T 17 l L

1D Lattice phonon model
Meiko CS—-2

LI RAL
Lt Lt

10°
10°

1 llllllll

T T Ui

1.1 l[lllll

Avg Run Time(ms)

1 Illlllll

1 l|lll|l‘

10*

L1 1 1 I | IS TS S ¥ l o1 1 1 l | ST T 1

0 20 40 60 80
Number of Processors

(b)

Fia. 2. (Continued)

10!

passed to neighboring nodes to continue with the MD evolution. We refer to
this case as the “1D” problem. The different curves correspond to different
numbers of nodes in the calculation: k& = 1,2,4,8, and 16. Figures 1(a),
1(b) and 1(c) show results for the workstation cluster, the Intel iPSC/860,
and the Meiko, respectively. We see that for small N, the computation
is dominated by communication between the nodes. Running on a single
node is substantially faster than distributing the calculation on any larger
set of nodes. The run times for k > 2 are roughly the same, since the time
to pass messages dominates and no advantage is gained by having fewer
masses to update per node. Meanwhile, for large N a cross-over is seen to a
computation dominated regime. Indeed the efficiency, the time spent for the
serial case (k = 1) divided by the number of nodes k times the time spent
in the parallel version [13] is close to unity.

If the nodes truly communicated simultaneously, one might expect the
time 7' to be completely independent of k£ for £ > 2 for small N. How-
ever, for all three architectures, we appear to observe roughly T o k in the
communication limited, small N regime. It is not clear to us at this stage
whether this is a hardware or p4 software limitation.

We can present this data in a slightly different way by showing the run
time as a function of the number of machines for different N. This is done

Simulations of Interacting Many Body Systems Using p4 339

in Fig. 2, where again data are shown for different parallel environments.
We see that for computationally unintensive problems, small N, there is no
gain by running on large k. Indeed, ¥ = 1, where no communication is
required, is optimal. However, as the problem becomes more demanding, we
enter a regime where the run time falls off as 1/k. We emphasize that in the
problems of interest to us N = 10%. We therefore want to simulate precisely
this case where parallel computation is necessary and desirable.

In Fig. 3 we show a plot analogous to that of Fig. 1 for the case of longer
range interactions when the position of every mass on every node needs to
be passed to the neighboring node to continue the evolution. We refer to
this case as the “2D” problem. Note that since each node still only needs to
communicate with its two neighboring nodes (now, however, passing more
data than the 1D case) and not with all of the nodes, we do not need to resort
to any type of binary tree reduction summation to efficiently compute the
force on a given ion. Despite the more complicated interactions, Fig. 3 has
basically the same features as Fig. 1. For the HP cluster of workstation, the

10 T T LRI || T T T T 117 II T
2D Lattice phonon model
HP Workstation Cluster

T 1T 17171
) I N I I}

T
1

k=2

o
T
i

\\\\\\\\”""‘\\\

LR O B I |

o
o]

Llllll!

Run Time / (1 node time)

e
[AY]
T
—-
(o]
'

0‘ 1 1 1 | -} l! 1 1 SO | II]
10° 10* 10°
Number of Masses

Fic. 3. Same as for Fig. 1(a) (HP cluster) except V now requires long range commu-
nication between the degrees of freedom. Surprisingly, the crossover point between k = 1
and k > 1 was not evident for the iPSC/860. This is probably due to the fact that eniire
vectors of coordinates were passed at once, and the “chunk size” of the message passing
library was sufficiently large to make the communications overhead actually negligible in
this case. A cross-over point is observed for the HP workstation cluster.

340 Scalettar et al.

cross-over between the communication limited and the computation limited
regimes is somewhat less well defined, and, as expected, occurs at a larger
N since the communication required is greater. For the case of the Intel
iPSC/860 no crossings were found, that is to say for the cases we could
consider the data was essentially in the linear speedup regime (i.e., as in
the right hand portions of Figs. 1 and 3). We attribute this to the message
passing chunk size on the Intel iPSC/860 being sufficiently large so that the
passing of the additional ionic coordinates did not significantly increase the
amount of time passing messages.

6. Results: Interacting electron system.

Parallelized Monte Carlo Simulations: Since our group [14] does a very
large number of Monte Carlo simulations (roughly hundreds of thousands of
workstation hours per year) using our own Fortran and C programs, we
decided that to be effective in taking advantage of the emerging parallel
computing technologies, we should (1) write codes which are nearly machine
independent and (2) exploit the statistical nature of the Monte Carlo algo-
rithm as much as possible. The p4 parallel programming system supplies us
with the solution to point (1). To address point (2) we have written a num-
ber of software tools, applied on top of the p4 environment, which we have
found very effective in running simulations on parallel machines or clusters
of workstations. This method will now be described.

Generally speaking, in Monte Carlo one has a “state” variable X that is
a point in a large dimensional space (typically a 1000 to 10000 dimensional
vector for our problems discussed in this paper). The state X is distributed
via some complicated probability distribution P(X) that can nonetheless be
sampled. For the problems discussed here the Metropolis random walk algo-
rithm is used [15] and P(X) is the Boltzmann factor exp(—#H) mentioned
above. In the following, however, the form of P(X) is immaterial. We wish
to compute averages of a physical quantities A(X) given by:

4) (A) = / AX)P(X)dX .

Where the integral indicates a quadrature in an extremely large dimensional
space. Using a sampling algorithm for P (e.g., the Metropolis algorithm),
one simply generates and collects a set {X;} of A sampled points, and uses

1 N
(5) (4) = 57 2 AX3)
=1

as an estimate for the desired value (A). The expected error will go as
o/VN, with o depending on the degree of correlation and fluctuation of
A(X) in the sampling.

Simulations of Interacting Many Body Systems Using p4 341

The key point is that if one can use independent processors each to
generate its own set of collected points {X;}, then these sets can simply be
combined at the end to form an overall estimate for (A4) and also for its
error. Hence the algorithm is very effectively parallelized, there being only
trivial communication at the beginning and end of the calculation. In our
implementation there is also a trivial communication during the calculation
in order to “load balance” the processors: if the number of requested runs
is larger than the number of processors, then the earlier finishing processors
are given additional runs to perform.

We have implemented this strategy by trying to be as general and labor
saving as possible. In fact, the parallel interface program we have written
enables us to take any of our Monte Carlo (or similarly related) programs
and run them on a parallel machine with essentially no modification. We
have done this as follows. A program was written in C using the p4 message
passing routines to set up linkage between a Master and many Slave proces-
sors. The Master coordinates the work, initializing and giving commands
and input data (with a possible random seed) to be run by the Slaves. A
Slave creates the necessary temporary directories and runs its command by
the standard UNIX system() call. The Slave’s command can be a Fortran
or C executable, a pipe, or simply a shell script (that, say, in turn calls more
complicated programs). When a Slave has finished its run, it sends a copy of
each generated output file back to the Master which collects and labels them.
If any more jobs are required the Slave gets the next command, otherwise
it terminates. When all the runs have been completed, the Master averages
all the data together and performs error estimates.

The only constraints our program imposes are the facts that (1) the ap-
plication places all desired data required into ASCII files and (2) the data in
those files can be simply averaged together to construct the overall estimates
of quantities and their associated error bars. Occasionally an existing appli-
cation program must be modified so that its output is suitable for our file
averaging program. This is usually quite simple, and in general a good deal
easier than explicitly parallelizing (say via p4 library calls) the application
source code itself (perhaps by performing a global parallel reduction over
variables one desires to average).

Although not essential, a “front end” to the program was written in the
Perl scripting language. The Perl script provides the interface between the
user at the command line or via a configuration file the user has constructed
(it is essentially a superset of the p4 “procgroup” file format). The script also
performs all the initializing, file averaging, and error estimation. The Perl
script spawns and communicates with the Master processor via a two-way
pipe communication provided by the Perl open2() subroutine. The reason
for choosing Perl over C for these tasks is the convenient and robust string
manipulation functions of Perl compared with using C regexp routines. The

342 Scalettar et al.

enhanced string manipulation was convenient for the parsing of the config-
uration file, and was nearly essential for the writing of the “file averaging”
portion of the Perl program.

The file averaging script solves the practical problem of how one av-
erages data embedded in files containing a mixture of text and numerical
data. For example, if three output files from different processors contain the
strings “Energy(T)= 2.12”, “Energy(T)= 2.22”, and “Energy(T)= 2.26”,
the first field will “average” to “Energy(T)=", while the second field will av-
erage to 2.20 along with an error estimate (in this case about 0.06). The
only constraint is that the files all possess the same “word pattern”. That is
to say, if nth line of file 1 contains m word fields (separated by white space),
then the nth line of all the remaining files must also have m fields. Of course,
the number of word fields need not be the same for each line inside a file. We
find that this program handles nearly all of the output formats our programs
generate. It can be easily generalized to treat new cases.

Roughly speaking, the startup time of 16-64 Slaves is rarely over a
minute, and often much quicker, especially on the Meiko-CS2. The p4 soft-
ware suite provides a startup server (as in PVM) to avoid most of the remote
shell (rsh) startup overhead on a cluster of workstations. For the problems
we have considered, however, the rsh startup time is small compared with
the total run time. There is also a potential bottleneck in having the Perl
script perform all of the output averaging. Typically, our output data files
are less than 50KB in size, and it turns out this time also that it is accept-
ably small, except perhaps for very short test runs. Some large file outputs
(500KB) tests were performed and took an average of 1 to 2 minutes for 16
node files on a typical UNIX workstation. If for some application this time
becomes too large, the present program could be modified to begin the av-
eraging as soon as an output file comes in, rather than wait for all files to be
collected. Alternatively, the Perl script could be replaced by a (presumably
faster) C program. As a last resort, the averaging tasks could be spread out
over the processors.

The results presented below are Monte Carlo simulations, but they also
include averaging over a random potential energy term (that is to say, a
Monte Carlo simulation needs to be performed for each disorder realiza-
tion). In this case a large number of statistically independent calculations
are averaged together regardless of whether the simulations are done in par-
allel or serially. For pure systems, on the other hand, one may ask what the
drawbacks to splitting a total of Tior, Monte Carlo time steps over & pro-
cessors with Tproc = Tiotal/k Monte Carlos steps per processor are. What
enters into this consideration is the correlation or relaxation time Trelax,
defined to be the Monte Carlo time steps ¢ required for a sampled state
Xitt to lose memory of, or become independent of its state at time i: X;.
This time ¢ = Tiejax is dependent on the choice of Metropolis Monte Carlo

Simulations of Interacting Many Body Systems Using p4 343

apriort transition probability, the problem being investigated, and the phys-
ical quantities being measured. Roughly speaking, the initial T}cjax Monte
Carlo steps must be discarded from averaging. As k increases Tproc de-
creases down t0 Treax and hence may provide no configurations acceptable
for averaging.

From general statistical considerations, a rough estimate of the error
for Tiotal Monte Carlo steps performed on a single processor when the ini-
tial Tyelax steps are discarded is ~ 0/v/Tiotal — Irelax- O is the variance of
the quantity being measured. In spreading the Tiotay Monte Carlo steps
over k processors, we have to ensure that each independent run is prop-
erly equilibrated. Hence we must discard Tielax steps on each processor,
for a total of k X Tieiax steps thrown out as opposed to only Tieax for
the single processor case. An analogous rough estimate for the & proces-
sor case i ~ 0/v/Tiotal — k X Trelax, and so when using k processors there
is a danger that the error is much larger than for the single processor when
k X Trelax — Tiotal, since the denominator for the k& processor error estimate
goes to zero in that limit.

The above rough estimates may be made more quantitative if we make
a few assumptions that are nearly always satisfied in real Monte Carlo sim-
ulations. Let z(t) be the value of an observable of interest at time ¢ (e.g.,
the total energy of the system). We can usually take the autocorrelation
function to be exponentially decaying in time:

(6) (2(t)z(t) = (x)? + o exp(~|t = ¢'|/7).
The angular brackets denote averages (here of a physical quantity measured
at two different times), 0% = (22?) — ()2, and 7 is the exponential decay

constant, or autocorrelation time. Now, if the first Tieax out of Tigtal Steps
are discarded, then the average &, which we take for the measurement part
of the run is clearly

g i () 3% a0

Ttotal - Trelax t=Trelax+1

and its corresponding error is € = /(Z?) — (£)?. € may be calculated by
squaring Eq. (7), averaging using Eq. (6), and summing the resulting geo-
metrical series. We present the general result for k processors, where we can
assume results from different processors are independent, but within a given
processor run the quantities are correlated over times ~ 7. The error ¢ for
k processors is then

o? 2e~ 17 2e~1/7 (1 — e~ Tx/T)

2 __ Y —
(8) ek_'ﬂck 1+1—e—1/'f T (1= 1)

where Ty = (Tiotal — kTrelax)/k, which is the number of measurements used
on a single processor.

344 Scalettar et al.

The prefactor in front of the square brackets, o?/T;k simply gives the
rough estimate of the error mentioned earlier. The quantity inside the square
brackets is due to autocorrelation (note that as 7 — 0 the quantity in the
brackets — 1). The prefactor by itself suggests e > €1, which is what
we generally expect. However, consideration of the full expression in Eq. (8)
shows that the ratio ex/€; can actually be less than one, but only in the region
where Trelax < 7. This is due to the fact that with large autocorrelation it
is better to have k independent runs with few measurements, rather than
a single run with many correlated measurements. It is, however, dangerous
to discard fewer than 7 steps because one is then not guaranteed to obtain
properly equilibrated results. In general, the equilibration time Tielax Will
be at least as big as 7, and in some cases a good deal larger. Thus, no
matter how tempting, it is best to avoid the region €x/e; < 1 and to take
Trelax > 7. Results for the various regimes taking typical values of Tielax =
100 and Tigta1 = 50000 are displayed in Fig. 4. It is encouraging to note
that (in this example) for a fairly wide range of processors number, say
1 < k < Tiotal/2Trelax = 250, the k processor error is no more than 50%
more than the k¥ = 1 processor case. The discussion of error estimates in the

| Relative Monte Carlo Error

5 _vs. Number of Processors T,=207_|]

| T, = total # of steps =50,000
T, = # of warmup steps =100
T = autocorrelation time

€/

0 200 400 600
Number of processors

F1G. 4. An example of the ratio €, /€1 of the Monte Carlo error for a k processor run to
a single processor run. As k becomes large, an increasingly large fraction of the run time
on the k processors is spent in a wasted, duplicate effort at equilibration.

Simulations of Interacting Many Body Systems Using pf 345

present paragraph ignores, of course, the large benefit that the k processor
case finishes in nearly 1/k of the amount of wallclock time for the single
processor case. This is the basic reason why one considers parallel processing
in the first place.

If 7 is large (7 > 5) and yet 7 >> 7 (i.e., each run is not overwhelmed
by the autocorrelation), then Eq. (8) reduces to €} =~ (27/Tx)(0?/k). That
is to say, the effective number of independent measurements is Ty /27 and
correlated blocks are roughly 27 long. Going in the other direction, when
there is only one measurement per processor (T = 1) one finds that exfe1l =
/Trelax /27, and this form describes the endpoints of the curves in Fig. 4
rather closely.

Hubbard Model Results: Clearly, the parallelization of codes in the way
we had described above side-steps the deepest issues of parallel computa-
tion. We therefore do not report on any timing benchmarks as we did in the
case of the genuinely distributed problem. We can easily increase the Monte
Carlo run time to amortize the cost of starting up the Slave processes and
performing the final averaging. This method has the virtue of being rapidly
applicable to existing codes, which for quantum MC tend to be quite elabo-
rate [16]. Instead, we will report on some new results for the physics of the
—U Hubbard model in the presence of disorder.

Figure 5 displays the off diagonal long-range order-parameter, or super-
conducting pair-pair correlation function P for 4 x 4 and 6 x 6 lattices as a
function of disorder A. For large enough A, P, is driven to zero as the system
size increases, indicating a localized, rather than superconducting, state. In
Fig. 6 we show a set of quantities which measure the transport properties
of the electrons in the —U Hubbard model, as a function of the amount of
disorder A put into the site energies. These quantities have hitherto only
been reported in the clean system [17,18]. The required averaging over many
disorder realizations makes this problem of “Grand Challenge” calibre. The
solid triangles show the kinetic energy of the electrons. This is a local quan-
tity, which varies fairly smoothly as A is increased. The open circles are
the superfluid density D;, as determined by analyzing the momentum and
frequency dependence of the current-current correlation function [18]. The
full circles are an alternate measure of this quantity, obtained by looking
at the asymptotic behavior of the equal time pair-pair correlations. When
these are nonzero, some fraction of the electrons in the system can flow with
zero resistance. Finally, the full squares measure the “Drude weight” D, an
ingredient in the normal conductivity. When D becomes zero the system
cannot conduct. For a clean system where the transitions are driven by in-
teractions rather than disorder, three phases are possible: a superconductor
where D and D, are both nonzero; a normal metal where only D is nonzero;
and an insulator where both vanish. In our disordered system, the criteria
are in fact more complicated.

346 Scalettar et al.

0.06

0.04

0.02 —

ll|||1l]]||l|lllll

U = —4 Hubbard model -

p—

Superconductivity .
parameter= P b

Disorder strength= A

4x4x64 Lattice —

0.00

Fic. 5.

state.

KE; D; p,; 10%d(4,4)

F1G. 6. The Kinetic energy (solid triangles), transport properties (D and p,, (solid squares
and open circles, respectively)), and pair-pair correlation function (P, = d(4, 4)) (solid

The pair-pair correlation function P, for different strengths of randommness is
shown. Data is given for 4 x 4 and 6 X 6 spatial lattices with L = 64 imaginary time points
to begin to assess finite size effects. When P, is nonzero, the system is in a superconducting

N=8x8 f=10 p=0.875 U=—4.0

T 1

circles) for an 8 X 8 disordered Hubbard lattice.

Simulations of Interacting Many Body Systems Using p4 347

These last three quantities are all global measurements of the mobility
of the electrons in the model, and therefore unlike the kinetic energy they all
are capable of showing indications of a transition between these phases as the
disorder strength A is increased. The results we show suggest that there are
superconducting and insulating phases, with no intervening metallic region.
We will need to do considerably more data analysis in order to determine if
indeed there is a finite value A, and the numerical location of this transition
point. In particular, it will be necessary to do a finite size scaling study of
the behavior of these quantities with lattice size.

In order to generate this data, we have used the above mentioned soft-
ware tools to generate input files, submit programs, and average data. Each
point in Fig. 5 represents an average over 20-64 independent configurations
of random site energies. This was done by running on 10-16 HP/715 work-
stations and assigning 2-4 disorder realizations to each node. The total wall
clock time for these simulations was about 2500 workstation hours. In order
to undertake the detailed scaling analysis, we will run this program, using
the parallel interfaces tools we have developed, on the 128 node Meiko CS-2
or possibly an IBM SP1.

7. Conclusions. We have first described results for Molecular Dynam-
ics simulations for a set of coupled masses and springs, which is set up to
model of interacting magnetic flux lines in a superconductor. We have fo-
cussed on the efficiency when a single such task is distributed (using p4) over
a set of communicating processors, and have given timing results for different
numbers of CPUs, problem sizes, and types of platforms. We have also tested
two different types of potentials between the masses, one short-ranged and
one long-ranged, which require different levels of internodal communication.

The Molecular Dynamics simulation of lattice vibrations has a much
simpler algorithmic structure than quantum Monte Carlo simulations of in-
teracting electrons. For these Monte Carlo problems, we have explored a
less elegant, but nevertheless effective approach which distributes largely in-
dependent runs on a set of processors. This is an attractive procedure for
quantum MC simulations, both because it lends itself to efficient paralleliza-
tion, and preserves existing, complicated, codes. Indeed, we have developed
a set of simple software tools which allow the easy construction of generic
input files, the submission of multiple independent jobs to different nodes,
and the subsequent averaging of data files [19]. However, we do emphasize
that the approach could have significant drawbacks. An important one is
that each node must then have sufficient memory to store all the data for its
own run, a memory requirement which in some of our applications goes as
1/T? where T is the temperature. Since we are often interested in the T — 0
limit, this could be a problem. In contrast, in a “distributed calculation”
method, the memory requirements themselves can also be distributed.

348 Scalettar et al.

Acknowledgement. This work was supported by the National Science
Foundation under grant No. ASC-9405041. We thank Jeff Collins for bring-
ing up and installing p4 on the ECE HP cluster at U. C. Davis. We thank
Steve Slater of U. C. Berkeley for useful information about p4 and paral-
lel Monte Carlo calculations, and to Nandini Trivedi and Mohit Randeria
for illuminating discussions on the physics of the —U Hubbard model. We
thank the Academic Computing Service in the College of Engineering for the
use of the Intel iPSC/860 hypercube and the Lawrence Livermore National
Laboratory for the use of the Meiko CS-2.

REFERENCES

[1] R. BUTLER AND E. LUSK. Monitors, Messages, and Clusters: the p4 Parallel Program-
ming System. Parallel Computing 20, April 1994. Also Argonne National Labo-
ratory preprint MCS-P362-0493. p4 has its origins from the work of J. BOYLE,
R. BUTLER, T. Disz, B. GLICKFELD, E. Lusk, R. OVERBEEK, J. PATTERSON
AND R. STEVENS. Portable Programs for Parallel Processors, Holt, Rinehart, and
Winston, 1987.

[2] N. W. ASHCROFT AND N. D. MERMIN. Solid State Physics. W. B. Saunders, 1976.

[3] W. H. PrEss, B. P. FLANNERY, S. A. TEUKOLSKY AND W. T. VETTERLING.
Numerical Recipes. Cambridge University Press, 1986.

[4] R. KuBo. Statistical Mechanics. North-Holland, 1965.

[5] See the articles by D. R. NELSON AND D. S. FISHER. In Phenomenology and Appli-
cations of High Temperature Superconductors. K. S. BEDELL et al. (ed), Addison-
Wesley, 1992.

[6] P. G. DE GENNES AND J. MATRICON. Rev. Mod. Phys. 36, 1964: 45.

[7] J. L. CARDY (ed). Finite Size Scaling. North-Holland, 1988.

[8] A. MONTORSI (ed). The Hubbard Model. World Scientific, 1992.

[9] R. T. SCALETTAR, E. Y. LoH, JR., J. E. GUBERNATIS, A. MoREO, S. R. WHITE,
D. J. ScaLAaPINO, R. L. SUGAR AND E. DAGOTTO. Phys. Rev. Lett. 62, 1989:
1407.

[10] R. BLANKENBECLER, D. J. SCALAPINO AND R. L. SUGAR. Phys. Rev. D24, 1981:
2278.

[11] D. W. HEERMANN AND A. N. BURKITT. Parallel Algorithms in Computational
Science. Springer-Verlag, 1991.

[12] A 64 node Intel Gamma has been found to perform at roughly the same speed as a 4
processor CRAY-XMP for some MD applications. See, for example, S. J. PLIMP-
TON. In Proceedings of 5th Distributed Memory Computing Conference (published
by IEEE), Charleston, SC, April 1990; S. J. PLIMPTON AND G. HEFFELFINGER.
In Proceedings of Scalable High Performance Computing Conference (published
by IEEE), Williamsburg, VA, April 1992.

[13] D. P. BERTSEKAS AND J. N. TSITSIKLIS. Parallel and Distributed Computation.
Prentice Hall, 1989.

[14] A feature of quantum MC in the condensed matter community, as opposed to, for
example, lattice gauge theory calculations in high energy physics, is that there is
no single, underlying model whose study is central to the entire community for
highly extended periods of time. In such a situation where models evolve rapidly
and a set of groups are interested in rather diverse phenomena, it is clearly less
sensible to spend large amounts of time optimizing codes, and the ability to take

[15] P.

Simulations of Interacting Many Body Systems Using p4 349

advantage easily of serial codes on parallel platforms becomes more valuable.
ALTEVOGT AND A. LINKE. Parallel Computing 19, 1993: 1041.

[16] We emphasize that for nearly all problems we consider there is no loss in efficiency in

[17] A.

(18] D.

parallelizing the Monte Carlo program in the manner that we have. Indeed, one
may argue that any parallelization scheme based on message passing would run
the risk of being significantly slower. A case where our method would fail would
be for a system so large that one was unable to even equilibrate one independent
system in the available CPU time. In that case some method of breaking up the
large system into subsystems would have to be attempted. Fortunately, very few
of the applications we work on in fall into this category.

MOREG AND D. J. SCALAPINO. Phys. Rev. Lett. 66, 1991: 946; and M. RANDERIA,
N. TRIVEDI, A. MOREG AND R. T. SCALETTAR. Phys. Rev. Lett. 69, 1992: 2001.
J. SCALAPINO, S. R. WHITE AND S. C. ZHANG. Phys. Rev. B47, 1993: 7995.

[19] Anyone interested in obtaining the p4 parallel independent run interface tools we

have developed are welcome to try them. Contact runge@solid.ucdavis.edu for
more information. We are interested in thinking of ways of extending these tools
to treat different types of problems not as straight forward as the independent
data averaging we have performed.

