Monte Carlo and Molecular Dynamics Simulations Using p4

K. J. Runge,! P. Lee,® J. Correa,’ R. T. Scalettar,' and V. Oklobdzija?
! Physics Department, University of California, Davis, CA 95616

2 Department of Electrical and Computer Engineering, University of California, Davis, CA 95616

Monte Carlo (MC) and Molecular Dynamics (MD) sim-
ulations are powerful tools for understanding the properties
of systems of interacting electrons and phonons in a solid.
When mobile electrons are studied, these simulations are
limited to a few hundred particles. More powerful machines
and algorithms must be used to address many of the most
important issues in the field. We present results from using
the p4 parallel programming system on a variety of parallct
architectures to conduct MC and MD simulations.

L INTRODUCTION

Implementing parallel computations requires the
distribution of a problem, undoable on a single cpu,
over a network of coupled processors. Such a cal-
culation involves interconnected questions concerning
the underlying application and computer science issues
of properly sequencing tasks, passing messages, etc.
This requires significant rewriting of conventional se-
rial codes. However, many applications do not need
she full power of the parallel machine for a single run.
Rather their complexity resides in conducting a large
number of separate calculations. Most Monte Carlo
applications fall into this class, since statistically inde-
pendent configurations are needed which can be gen-
erated by launching simultaneous, non-communicating
copies of the code with different random number seeds.
Furthermore, it is frequently necessary to conduct a
veries of runs, for example sweeping the temperature,
and different nodes can be assigned different parameter
values. Finally, in cases where defects are present it is
necessary to conduct a disorder average over hundreds
or thousands of realizations.

The p4 parallel programming system is a library
of routines [1] that enables one to write portable,
machine-independent parallel code that can be used
on a variety of platforms. These can range from
a cluster of UNIX workstations to massively paral-
lel supercomputers. The p4 package, available at
ftp://info.mcs.anl.gov/pub/p4, is similar to PVM.
Yor our work we use processor to processor message
passing and timing library routines p4 provides. p4
also contains additional routines and interfaces. In
the different environments (HP, Sparc, AIX, Linux,
iPSC/860, and Meiko CS-2) in which we have installed
p4, we have found (except for the HP) that the compi-
lation, installation, and usage is straight forward.

1063-7133/95 $4.00 © 1995 IEEE

53

In this paper we will describe simulations using p4
with both types of parallelization mentioned above. In
the former, more challenging, case of distributing a sin-
gle run over many cpus, we study a classical model of
interacting lattice vibrations using Molecular Dynam-
ics. We have written codes using the p4 library to pro-
duce portable parallelized programs. In the latter case
of independent computations, we study by Quantum
Monte Carlo algorithm the two-dimensional Hubbard
Hamiltonian, a model which provides a computational
challenge at the forefront of current solid state the-
ory. Because of the complexity of the computations,
our goal is simple parallelization with the least rewrit-
ing of application codes. We describe software tools
we developed which enable the user easily to submit a
set of independent simulations to a parallel computer
or meta-computer. ‘The software will also perform the
necessary analysis of general data files, averaging data
returned from individual nodes automatically.

The remainder of this paper is organized as follows:
In Section II we review the basic ideas behind the
models we are studying and key features of the Monte
Carlo (MC) and Molecular Dynamics (MD) algorithms
for serial codes. Section II1 will briefly describe the
hardware platforms on which we test parallelized al-
gorithms. Section IV contains details of our first ap-
plication: a distributed MD calculation of interacting
lattice vibrations. Section V contains details of our
second application: a Quantum MC calculation of an
interacting clectron model in which independent simu-
lations are submitted to different nodes (differing either
in the random number seeds or in the disorder poten-
tials), and the software tools we have written. Section
VI concludes with sammarizing remarks.

II. REVIEW OF MOLECULAR DYNAMICS
AND MONTE CARLO

Molecular Dynamics for a Lattice Vibration
Model: In condensed matter physics one is interested
in calculating properties of interacting electrons and
ions in a crystal. This is a complicated task, and so
simple models are introduced to focus on the relevant
degrees of freedom for particular problems. In order to
understand the elastic and thermal properties of many
crystals, [2] for example, it is often sufficient to consider
a classical model which consists of a “kinetic energy”

K which is a function of the particle velocities, and
a “potential energy” V which depends on the particle
positions. For realistic forms of V' the models are not
soluble analytically. Here one numerical approach is
“Molecular Dynamics.” One integrates Newton’s equa-
tions of motion (F = ma) numerically by discretizing
time and employing Runge-Kutta, leap-frog, or some
equivalent finite difference approach. {3]

There is a large class of different problems which can
be described in a similar fashion. A common feature is
a rather local set of interactions between different co-
ordinates. This simplifies things considerably. Never-
theless, the problems attempt to describe systems with
a very large number of particles, so the most powerful
computational resources are useful in their solution.

We are also interested in a second type of model in
which guantum mechanical effects are crucial. The MC
method we will use is too detailed to describe fully here.
{8] In brief, the quantum mechanical problem of evalu-
ating the partition function is replaced by an equivalent.
classical problem in one higher dimension. The length
of this added dimension is proportional to the inverse
of the temperature it is desired to simulate. Typi-
cally, it is necessary to choose 100 or so lattice sites
in this “inverse temperature” direction, so the study of
a two dimensional 8 x 8 = 64 spatial lattice of quan-
tum mechanical electrons requires the evolution of an
8 x 8 x 100 = 6400 classical lattice. Besides this added
Jimension, the primary difficulty is that, unlike many
classical models which have simplified, short range in-
teractions, here the equivalent classical model has in-
teractions which are very non-local (the interactions
are described by a determinant of a matrix involving
all of the coordinates). Naturally, this makes paral-
lelization of a single simulation extremely challenging,
since different pieces of the lattice must communicate
with each other frequently and in & complicated man-
ner. [9] For this reason we explore only simpler paral-
lelization schemes based on disorder or statistical av-
eraging, which, we emphasize, are nevertheless useful
and efficient ways to approach this class of problems.

111. TESTBED ARCHITECTURES

Workstation Cluster: Our first test architecture
consists of a set of approximately 40 HP 715 worksta-
tions linked by ethernet in the U.C. Davis Department
of Electrical and Computer Engincering. Each work-
station has a HP PA-RISC 9000/715 CPU and 10MB
of RAM memory. We have also worked on smaller clus-
ters of Sun Sparcl10 and IBM RS6000 550 workstations.
Intel IPSC860: QOur second test architecture is
a 32 node Intel iPSC/860 hypercube located in the
College of Engineering at U.C. Davis. This machine,

54

though now several years old, is still a rather a large-
scale parallel computer [10] with a MIMD architecture
where the computation is carried out by logically in-
dependent but cooperate processors. Each node is a
40MHz 1860 processor with 8MB of RAM.

Meiko CS-2: The Meiko CS-2 at Lawrence Liver-
more National Laboratory that we use is a 128 node
parallel supercomputer. Each node is a 70MHz Sparc
CPU running the Solaris operating system with 64 to
128 MB of RAM. In addition, each node has an at-
tached 90MHz T1 8847 based vector processing unit
capable of up to 200 MFLOPS peak performance.

10*

T ey
r Lattice phonon model 3

10°
E E— HP Workstation Cluster / 3
T 10tf /"*1&;
8" T
3 1

3
R T L
N ;

10
s k
& f E
10! - s
100 Ll il v vcd d v+
10° 10t 102 10® 10* 108 t0® 107

Number of Masses

Fig. 1a: The run time 7 versus number of masses
{problem size) N, for different numbers of nodes k. In each
case we did 1000 MD time steps. For small N the efficiency
is low, while for large N it approaches unity. Figs. 1a,b.c
show results for a cluster of HP-715 workstations, a 32 node
Intel iPSC/860, and a Meiko CS-2, respectively. In this
problem the structure of the potential V requires commu-
nication only at the boundaries of the sublattices put on
each node.

IV. RESULTS: INTERACTING LATTICE
VIBRATIONS

In our MD simulations, we started with a conven-
tional serial code which evolved the entire phonon lat-
tice on a single CPU. We then parallelized the code by
dividing the lattice into sections, and inserted appro-
priate p4 library commands, for example the processor
to processor message passing routines {(e.g. p4_send()
and p4.recv()). These p4 commands pass the values
of the ionic positions from processor to processor and
also synchronized the calculation.

In Fig. 1 we show a plot of the run time as a function
of the total number of masses for a situation when the
interactions between masses is very local. Specifically,

if there are a total of N masses and £ nodes, so that
n = N/k masses are assigned to each node, only 2 of
the n mass positions need to be passed o neighboring
nodes to continue with the MD evolution.

10° b~ Lattice phonon model -
- [intel iPSC/860 .]
(3
?,« 107 ,/ ;3
§ i k=16 - ——/%,:]
] e
é 107 g k=8 — e e i
nt Foked e e e :
& ol k=2 e
10° |- e E
: k=1 - 4
10% bl v nd v cd o
10° 1t 1% 10° 1c* 10° 10®
Number of Masses
Fig. 1l
(]
10 3 UL BNMILAALL BN ARL SR N B n.uE
E Lattice phonon model]
10° - ; —
™ 3 Meiko CS~-2 / 3
¢ 3 s 3
ERCN = 3
= 3 E
o o]
CE lna E_k-q, '—i
o F k=2 3
> - 3
- 9 3
2
10 - -§
E / 3
o]
1ot bl il ind v il
10° 10' 10® 10° 10* 10° 10°

Number of Masses

Fig. lc:

The different curves correspond to different numbers
of nodes in the calculation: k 1,2,4.8, and 16.
Figs. 1a,b,c show results for the workstation cluster,
the Intel iPSC/860, and the Meiko, respectively. We
see that for small N, the computation is dominated
by communication between the nodes. Running on a
single node is substantially faster than distributing the
calculation on any larger set of nodes. The run times
for k > 2 are roughly the same, since the time to pass
messages dominates and no advantage is gained by hav-
ing fewer masses to update per node. Meanwhile, for
large N a cross-over is seen to a computation domi-

55

nated regime. Indeed the efficiency, the time spent for
the serial case (k = 1) divided by the number of nodes
k times the time spent in the parallei version [11] is
close to unity.

ZEANEA N DAL A BRI H
10° £ Lattize phonon model 3
—_ s i HP Workstation Cluster :
a 10% —
F K~ k|
= Fe T~]
ERRL SN 3
& F T~ 3
g 100Fe S —
9 F — = 3
@ 10% .r"’/f' 3
< 3 3
10‘!-1{/ -1
P N R BN S
4] 5 10 15

Numbtear of Mechines

Fig. 2a: The run time T versns number of nodes &, for
different numbers of masses N. In each case we did 1000
MD steps. For small &, a single cpu (K = 1) is optinal,
while for larger .V the run time T first decreases with k.
then cventually saturates as the number of computations
per node becomes small. a=10". 3=10%2, v=107, §=10*
¢=10", k=10°,

If the nodes truly communicated simultaneously, one
might expect the time T to be completely independent
of k for £ > 2 for small N. However, for all three
architectures, we appear to observe T o & in the com-
munication limited, sinall N regime. It is not clear to
us whether this is a hardware or p4 software limnitation.

We can present this data in a different way by show-
ing run time as a function of the nwmber of machines
for different &'. This is done in Fig. 2, where again data
are shown for different parallel environments. We see
that for computationally unintensive problems, small
N, there is no gain by running on large k. Indeed,
k = 1 {no communication} is optimal. However, as the
problem becomes more demanding, we enter a regime
where the run time falls off as 1/k. We emphasize that
in the problems of interest to us N = 105 We there-
fore want to simulate precisely this case where parallel
computation is necessary and desirable.

In Fig. 3 we show a plot analogous to that of Fig. 1
for the case of longer range interactions when the po-
sition of every mass on every node needs to be passed
to the neighboring node to continue the evolution. De-
spite the more complicated interactions, Fig. 3 has ba-
sically the same features as Fig. 1. For the HP cluster
of workstation, the cross-over between the communi-
cation limited and the computation limited regimes is

somewhat less well defined, and, as expected, occurs at
alarger N since the communication required is greater.

Ty T
Lattice phonon model]
3
—_ Meiko CS-2 E
g T 3
= T ———— 100
) —— 3
g B
3
p — 10 o E
& e T 2]
e
4 :
3
D B BTN
40 60 80
Number of Processors
Fig. 2b:
2l = T T3
ol Lattice phonon model 1
10 E— _§
E’ E HP Workstation Cluster /a]
@, s
= 107 - , -
. %
= o]
§ 107 3
& E E
e r 4
2 b]
10t = / -3
F1 E
F]
10° Lud e ad NI | —

1o* 10%

Number of Masses

-
o
3

Fig. 3a: Same as for Fig. 1 except V now requires long
range communication between the degrees of freedom. Sur-
prisingly, the crossover point between k =1 and k > 1 was
not evident for the iPSC/860. This is probably due to the
fact that entire vectors of coordinates were passed at once,
and the “chunk size” of the message passing library was suf-
ficiently large to make the communications overhead small
iu this case. A cross-over is observed for the HP workstation
cluster. a=2597, 3=1400, y=783, §=1037, e=500.

V. RESULTS: INTERACTING ELECTRON
SYSTEM

Parallelized Monte Carlo Simulations: Since
our group [12] does a very large number of MC simula-
tions (~ 10* workstation hours per year) using our own

56

Fortran and C programs, we decided, to be effective in
taking advantage of the emerging parallel computing
technologies, to 1) write code that is nearly machine
independent and to 2) exploit the statistical nature of
the MC algorithm as much as possible. The p4 parallel
programming system supplies us with the solution to
point 1). To address point 2) we have written a number
of software tools, applied on top of the p4 environment,
that we have found very effective in running simula-
tions on parallel machines or clusters of workstations.
This method will now be described.

10° p——r—rrrrrr—rrrr YT rrrrrrT

E I ““[I 3

F Lattice phonon model]

E 10"~ Intel iPSC/860 / =
] m‘?— / ”/ 3
3 F 3
& C]
w k=1 ///]
< 10° - / -y 3
E 4 B 18 3

3

10® 10% 10* 108 10° 107

Number of Masses

Fig. 3b:

Generally speaking, in Monte Carlo one has a
“state” variable X that is a point in a large dimen-
sional space {typically a 1000 to 10000 dimensional
vector for our problems discussed in this paper). The
state X is distributed via some complicated probability
distribution P(X) that can be sampled. [13] We wish
to compute averages of physical quantities A(X) given
by: A = [A(X)P(X)dX. Where the integral indi-
cates a quadrature in an extremely large dimensional
space. Using a sampling algorithm for P, one simply
generates and collects a set {X;} of Msampled points,
and uses 4 = (1/N) ¥_;L; A(X:) as an estimate for the
desired value A. The expected error will go as o /N,
with o depending on the degree of correlation and fluc-
tuation of A(X) in the sampling.

The key point is that one can use independent pro-
cessors each to generate its own set of collected points
{Xi}, and then these sets are combined to form an
overall estimate for 4 and its error. Hence the algo-
rithm is very effectively parallelized, there being only
trivial communication at the beginning and end of the
calculation. In our implementation there is also simple
communication in order to “load balance” the proces-
sors: if the number of requested runs is larger than the

number of processors, the earlier finishing processors
are given more runs to perform.

We have implemented this straiegy by trying to be
as general and labor saving as possible. In fact, the par-
allel interface program we have written enables us to
take auy of our Monte Carlo (or similarly related) pro-
grams and run them on a parallel machine with essen-
tially mo modification. We have done this as follows. A
program was written in C using the p4 message passing
routines to set up linkage between a Master and many
Slave processors. The Master coordinates the work,
initializing and giving commands and input data {with
a possible random seed) to be run to by the Slaves. A
Slave creates the necessary temporary directories and
runs its command by the siandard UNIX system()
call. The Slave’s command can be a Fortran or C exe-
cutable, a pipe, or simply a shell script. When a Slave
has finished its run, it sends a copy of each output file
generated back to the Master who collects and labels
them. If more jobs are required the Slave gets the next
one, otherwise it terminates. When all the runs are
done, the Master averages the data together and per-
forms error estimates. The only constraint our program
imposes is that the application places all desired data
into ascii files and that data in those files can be simply
averaged together to construct the overall estimates of
quantities and error bars.

Although not essential, a “front end” to the pro-
gram was written in the Perl scripting language. The
Perl script provides the interface between the user at
the command line or via a configuration file the user
has constructed (it is essentially a superset of the p4
“procgroup” file format) and the script also performs
all the initializing, file averaging, and error estima-
tion. The Perl script spawns and communicates with
the Master processor via the two-way pipe communi-
cation provided by the Perl open2() subroutine. The
reason for choosing Perl over C for these tasks is its
extremely convenient string manipulation capabilities
over the standard C regexp libraries.

The file averaging script solves the practical problem
of how one averages data embedded in files containing
a mixture of text and numerical data. For example,
if three output files contains the strings “Energy(T)=
2.12”, “Energy(T)= 2.22”, and “Energy(T)= 2.26”,
the first field will “average” to “Bnergy(T)=", while
the second field will average to 2.20 along with an
error estimate (in this case about 0.06). The only
constraint is that the files all possess the same “word
pattern”, i.e., if n—th line of file 1 contains m,, word
fields (separated by white space), then the n—th line
of all the remaining files must also have m,, fields.

Roughly speaking, the startup time of 16-64 Slaves
is rarely over a minute, and often much quicker, espe-
cially on the Meiko-CS2. The p4 software suite pro-
vides a startup server to avoid most of the remote shell

57

(rsh) startup overhead, but for the problems we con-
sidered this startup time is small compared to the total
run time. There is also a potential bottleneck in hav-
ing the Perl script perform all of the output averaging.
Typically, our output datafiles are less than 50KB in
size, and it turns out this time also is acceptably small,
except perhaps for very short test runs.

The results presented below are MC simulations, but
they also include averaging over a random potential en-
ergy term (that is to say, a MC simulation needs to be
performed for each disorder realization). In this case a
large number of statistically independent calculations
are averaged together regardless of whether the simula-
tions are done in parallel or serially. For pure systems,
on the other hand, one may ask what are the draw-
backs to splitting a total of Tio.a1 Monte Carle time
steps over k processors with Tproc = Tiotai/k Monte
Carlos steps per processor. What enters into this con-
sideration is the correlation or relaxation time Tiejay,
defined to be the number of Monte Carlo times steps
t required for a sampled state X;4.¢ to lose memory of,
or become independent of its state at time i: X;. This
time ¢ = Tiefay is dependent on the choice of Metropolis
MC algorithm and on the problem being investigated.
The initial Treinx or so Monte Carlo steps must be dis-
carded from averaging. As k increases Tproc — Tretax
and hence may provide no configurations acceptable for
averaging,.

From general statistical considerations, a rough es-
timate of the error for Tioew MC steps performed
on a single processor with Tiejax steps discarded is
~ 0 /\/Tiotal = Trelax- In spreading the Tioray MC steps
over k processors, we have to be concerned that each in-
dependent run is properly equilibrated, hence we must
discard Tielax steps on each processor, for a total of
k X Trelax steps thrown out as opposed to only Tjelax for
the single processor case. The estimate for the k pro-
cessor case is ~ 0/ Tiotal — F X Trelax. S0 when using
k processors there is a danger the error is much larger
than for the single processor as k x Trejax — Tiotal.

These estimates may be made more quantitative if
we make a few assumptions about the form of the
correlation. Let x(f)} be the value of an observable
of interest at time f, e.g. the total energy of the
system. We can nearly always take the autocorrela-
tion to decay exponentially with time: {(z(t)z(t')) =
() + 02 exp(—|t — t'|/7) The angular brackets denote
averages (here of a physical quantity measured at two
different times), o = (¢?) — (z)?, and r is the expo-
nential decay comstant, or autocorrelation time. Now,
if the first Treio, steps are discarded, the average, £, of
the used portion of the run is

= ()
Ttotal - Trela.x

Tmu.l

z{t)

t=Tretax+1

(1

and its error is € = \/{Z?) — (£)2. ¢ may be calculated
from the above equations and summing the resulting
geometrical series. We present the general result for k
processors, where we can assume results from different
processors are independent, but within a given proces-
sor run the quantities are correlated over times ~ 7.
The error ¢; for k processors is then

2”17 (1= e T/T)
Te (1 —e-l/f)'*’} @

_ 0.2 26-—1/7
T Tik 1—e /7

2
€k

where Ty = (Tiotal — kT vetax)/ k, which is the number of
measurements used on a single processor.

4 LA S E S R B R A
| Relative Monte Carlo Error]
s Number of Processors / T=20r _
T, = total # of steps =50,000 / E
~ [To=# of warmup steps =100 , 1
l".ﬁ 2 }— 7 = autocorrelation timy’ —
“ L > o T=57
1 T=27 —
i e —— e
[T To=T/2
N S I B
V] 200 400 600

of processors

Fig. 4: The ratio ex/e; of the error for a k processor
run to a single processor run. As & becomes large, an in-
creasingly large fraction of the run time on the k processors
is spent in a wasted, duplicate effort at equilibration.

The prefactor in front of the square brackets, o%/Tik
simply gives the rough estimate of the error mentioned
above. The quantity inside the square brackets is due
to autocorrelation The prefactor alone itself suggests
€ > €1, however, the full expression in Eq. 8 shows that
the ratio €; /€1 can actually be less than one, but only
in the region where Trejax < 7. This is due to the fact
that with large autocorrelation is it better to have k
independent runs with few measurements, rather than
a single run with many correlated measurements. It
is, however, dangerous to discard fewer than 7 steps
because one is then not guaranteed to obtain properly
equilibrated results. In general, the equilibration time
Trelax will be at least as big as 7, and in some cases a
good deal larger. Thus it is best to avoid the region
er/e1 < 1 and to take Treax > 7. Results for the var-
ious regimes taking typical values of Treax = 100 and
Tiotal = 50000 are displayed in Fig. 4. Tt is encouraging
to note that (in this example) for a fairly wide range
of processors number (z.e. up to 250} the ¢ 1s no more

58

than 50% greater than the k = 1 processor case. The
discussion of error estimates in the present paragraph
ignores, of course, the large benefit that the & processor
case finishes in neatly 1/k of the amount of wallclock
time for the single processor case.

Hubbard Model Results: Clearly the paral-
lelization of codes in the way we have described above
side-steps the deepest issues of parallel computation.
We therefore do not report on any timing benchmarks
as we did in the case of the genuinely distributed prob-
lem. We can easily increase the MC run time to amor-
tize the cost of starting up the Slave processes and
performing the final averaging. This method does has
the virtue of being rapidly applicable to existing codes,
which for quantum MC tend to be quite elaborate. In-
stead, we will report on some new results for the physics
of the —U Hubbard model in the presence of disorder.

T

4
s

U = ~4 Hubbard model 4
0.08 —
Superconductivity 4
[parameter= P,]
3 Disorder strength= 4 1
. 0.04 - —
a F i
0.02 — 4x4x64 lattice —
r 6x6x64 1
[| |
0.00 Lt 1 -
(V] 2 4 8 8

Fig. 5: The pair correlation function P. for different
strengths of randomness is shown. Data is given for 4 x 4
and 6 x 6 spatial lattices with L = 64 imaginary time points
to begin to assess finite size effects. When F, is nonzero,
the system is in a superconducting state.

In Fig. 5 we show a measure of the tendency to-
wards superconductivity of the system, the “pair-pair
correlation function,” as a function of the amount of
disorder put into the lattice. As the disorder strength
A is increased, the superconductivity pair-pair correla-
tion function is driven to zero. In order to generate this
data, we have used the above mentioned software tools
to generate input files, submit programs, and average
data. Each point represents an average over 64 inde-
pendent configurations of random site energies. This
was done by running on 16 HP/715 workstations and
assigning 4 disorder realizations to each node. Results
for 4 x 4 and 6 x 6 are presented. The 1 x 4 sweep
took 8 hours of wall clock time, hence representing a
total of 128 workstation hours. The 6 x 6 data took
24 wall clock hours and represent only 32 independent

random site realizations per point. We intend to run
this program, using our parallel tools we have devel-
oped, on a 128 node Meiko CS-2 or possibly an [BM
SP1 to obtain a more accurate picture of the possible
phase transition.

VI. CONCLUSIONS

We have first described results for Molecular Dy-
namics simulations for a set of coupled masses and
springs, which, in actual fact, is really a model of in-
teracting magnetic flux lines in a superconductor. We
have focused on the efficiency when a single such task
1s distributed (using p4) over a set of comrnunicating
processors, and have given timing results for different
numbers of cpus, problem sizes, and types of platforms.
We have also tested two types of potentials between the
masses, one short- and one long- ranged, which require
rather quite different. levels of internodal communica-
tion.

The Molecular Dynarnics simulation of lattice vibra-
tions has a much simpler algorithmic structure than
quantum Monte Carlo simulations of interacting elec-
trons. For these Monte Carlo problems, we have ex-
plored a less elegant, hut nevertheless effective ap-
proach which distributes largely independent runs on
a set of processors. This is an attractive procedure for
quantum MC simulations, both because it lends itself
to efficient parallelization, but also because it preserves
existing, complicated. codes. Indeed. we have devel-
oped a set of simple software tools [14] which allow the
easy construction of generic input files, the submission
of multiple independent jobs to different nodes, and the
subsequent averaging of data files.

ACKNOWLEDGMENTS

[his work was supported by the NSF under grant
No ASC-9405041. We thank Jeff Collins for bringing
up and installing p4 on the ECE HP cluster at U.C.
Davis. Thanks also goes to Prof Jasmina Vukic and
Steve Slater of U.C. Berkeley for useful information
about p4 and parallel Monte Carlo calculations. We
thank the Academic Computing Service in the College
of I'ngineering for the use of the Intel iPSC/860 hyper-
cube and the Lawrence Livermore National Laboratory
for the use of the Meiko (/S-2.

59

(1] Ralph Butler and Ewing Lusk, “Monitors, Messages,
and Clusters: the p4 Parallel Programming System”,
Parallel Computing, 20, April 1994. Also Argonne Na-
tional Laboratory preprint MCS-P362-0493. p4 has its
origins from the work of J. Boyle and R. Butler and

T. Disz and B. Glickfeld and E. Lusk and R. Overbeek

and J. Patterson and R. Stevens, Portable Programs

for Parallel Processors; Holt, Rinehart, and Winston,

1987.

Solid State Physics, N.W. Ashcroft and N.D. Mermin,

W.B. Saunders (1976).

Numerical Recipes, W.H. Press, B.P. Flannery, S.A.

Teukolsky, and W.T. Vetterling, Cambridge University

Press (1986).

[4] Statistical Mechanics, R. Kubo, North-Holland (1965).

[5] Finite Size Scaling, J.L. Cardy (ed), North-Holland
(1988).

[6] The Hubbard Model, A. Montorsi (ed), World Scientific
{1992).

[7] R.T. Scalettar, E.Y. Loh, Jr., I.E. Gubernatis, A.
Moreo, S.R. White, D.J. Scalapino, R.L. Sugar, and
E. Dagotto, Phys. Rev. Lett. 62, 1407 (1989).

[8] R. Blankenbecler, D.J. Scalapino, and R.L. Sugar,
Phys. Rev. D24, 2278 (1981).

[9] D.W. Heermann and A.N. Burkitt, Parallel Algorithms
in Computational Science, Springer-Verlag (1991).

[10] A 64 node Intel Gamma performs at roughly the same
speed as a 4 proc CRAY-XMP for some MD applica-
tions. See, for example, S.J. Plimpton, in “Proceedings
of 5th Distributed Memory Computing Conference”
(published by 1EEE), Charleston, SC, April 1990; S.J.
Plimpton and (. Heffelfinger, in “Proceedings of Scal-
able High Performance Computing Conference” (pub-
lished by IEEE), Williamsburg, VA, April 1992.

[11] Parallel and Distributed Computation, D.P. Bertsekas
and J.N. Tsitsiklis, Prentice Hall (1989).

[12] A feature of quantum MC! in the condensed matter
community, as opposed to, for example, lattice gauge
theory calculations in high energy physics, is that there
is no single, underlying model whose study is central to
the entire community for long periods of time. In such
a situation where models evolve rapidly and a set of
groups are interested in diverse phenomena, it is clearly
less sensible to spend large amounts of time optimizing
codes, and the ability to take advantage easily of serial
codes on parallel platforms becomes more valuable.

[13] P. Altevogt and A. Linke, Parallel Computing 19, 1041
(1993).

[14] Anyone interested in our p4 parallel independent
run interface tools is welcome to try them. Contact
runge@solid.ucdavis.edu for more information.

(2]
(3]

