international Journal ol High dSpeed Lomputing, Voi. , INO. 3 (1YY9) 460—4%¥U
© World Scientific Publishing Company

MULTITHREADED DECOUPLED ARCHITECTURE

MIKHAIL N. DOROJEVETS

Parallel Systems Laboratory
Institute of Informatics Systems SO RAN
6 Lavrentiev Pr., Novosibirsk 630090 Russia

E-mail: midor@isi.itfs.nsk.su

VOIJIN G. OKLOBDZIJA

Advanced Computer Systems Engineering Laboratory
Department of Electrical and Computer Engineering
University of California, Davis, CA 95616, USA
E-mail: vojin@ece.ucdavis.edu

Received July 5, 1994

ABSTRACT

A new computer architecture called the Multithreaded Decoupled Architecture
has been proposed for exploiting fine-grain parallelism. It develops further some
of the ideas of parallel processing implemented in the Russian MARS-M com-
puter in the 1980s. The MTD architecture aims at enhancing both total machine
throughput and a single thread performance. To achieve this goal, we propose a
two-level parallel computation model. Its low level defines the decoupled parallel
execution of instructions within program fragments not containing branches. We
will be referring to these fragments as basic blocks. The model’s high level defines
the parallel execution of multiple basic blocks representing a function or proce-
dure. This scheduling hierarchy reflects the MTD storage hierarchy. Together the
scheduling and storage models allow a processor with multiple execution units to
exploit several forms of parallelism within a procedure. The compiler provides the
hardware with thread register usage masks to allow run-time enforcing of control
and data dependencies between the high level threads. We present a possible im-
plementation of the MTD-processor with multiple execution units and two-level
distributed register memory.

Keywords: Fine-grain parallelism, superscalar, multithreading, decoupled
architecture.

1. Introduction. In order to exploit instruction level parallelism, su-
perscalar and VLIW computers are capable of issuing multiple instructions
per cycle to multiple functional units that can operate concurrently. New

465

466 Dorojevets & Oklobdzija

technology provides ways to increase the number of functional units and reg-
isters within the chip. The question is how much of the potential parallelism
existing in a program can be really exploited by superscalar computers with
multiple functional units, and how efficiently hazards and contentions can
be resolved.

The exploitation of parallelism within basic blocks by hardware began
almost thirty years ago. Two algorithms currently used to solve the problem
of data dependencies between multiple instructions were originally developed
in the 1960’s: Tomasulo’s algorithm [9] and Thornton’s algorithm [10]. The
Thornton’s algorithm, also known as “scoreboarding”, was used again in
Intel’s and Motorola’s RISC processors, the I960CA and MC88110, respec-
tively. Recently a register-renaming algorithm (which essentially supersedes
Tomasulo’s one) has been developed and implemented in the IBM RS/6000
superscalar processor [11].

The effectiveness of all the algorithms is limited by the complexity of the
control hardware that handles contention for data between instructions. The
question is whether such hardware solutions can adequately cope with the
increase in the number of execution units and registers in next-generation
superscalar computers. Taking into consideration the small amount of paral-
lelism within basic blocks, superscalar architectures with VLIW ones crossed
block boundaries and used a speculative execution concept in order to exploit
the higher-level, inter-block parallelism. This paper describes a new archi-
tecture for exploiting fine-grain parallelism in sequential programs. This
Multithreaded Decoupled (MTD) architecture allows multiple threads and
multiple operations within threads to proceed in parallel in a processor with
multiple execution units and distributed register memory.

In Section 2 we describe the main features of the MTD execution model.
Section 3 makes comparison to related work. A possible implementation of
the MTD architecture is presented in Section 4. Concluding remarks are
made in Section 5.

2. Model of execution. The multithreaded decoupled architecture is
based on a two-level parallel computation model. Its low level defines the
decoupled parallel execution of instructions within program fragments not
containing branches. We will be referring to these fragments as basic blocks.
The model’s high level defines the parallel execution of multiple basic blocks
representing a function or procedure. This scheduling hierarchy reflects the
MTD storage hierarchy. Together the scheduling and storage models allow a
processor with multiple execution units to exploit several forms of parallelism
within a procedure.

(a) Low level

From the programmer’s point of view, a basic block is a sequence of
instructions which execute sequentially from the beginning to end without

Multithreaded Decoupled Architecture 467

branching. The low level scheduling model represents a basic block as a
partially ordered graph of subblocks, where a subblock is a fully ordered
sequence of instructions to be executed by a separate unit. For each unit,
the order of instructions in the unit’s subblock strictly corresponds to the
one in which the unit’s instructions occur in the logical, non-split basic block.
The splitting of a basic block in multiple instruction subblocks occurs either
at the compile or run time, depending on the implementation of the MTD
model.

We will be referring to the execution of these unit’s specific instruc-
tion streams by separate execution units as USI-threads. Also, the set of
USI-threads representing the execution of a basic block is referred to as a
BB-thread.

Each execution unit is a simple state machine that can work indepen-
dently of other units. The MTD decoupled model of execution allows mul-
tiple USI-threads to proceed in parallel at their own rate depending on the
availability of their instructions’ operands.

From the issue/decode logic’s point of view, any instruction within a
basic block can work with register data of two types: local (USI-thread level)
and global (BB-thread level). The local data are the results of execution of
the basic block’s instructions. A local memory distributed over the execution
units keeps these local data accessible to all instructions which need them
until the BB-thread terminates. The global data are ones computed by other
BB-threads preceding to the current one. If a value generated by any USI-
thread’s instruction is expected to be used outside the basic block, it is to
be written in a common register file as well. Once written in the common
register file, the global data can live until the execution of the procedure
completes.

The MTD model assumes direct communication between all USI-threads
within the same BB-thread. For any USI-thread’s instruction, the corre-
sponding unit’s part of the local memory always has a place to hold the in-
struction’s result. Its address corresponds to the instruction number within
the USI-thread. (No instruction contains an explicit destination address field
specifying where its outcome is to be written in the local memory.) In fur-
ther, this locally-generated value can be addressed by a combination of the
number of the unit executing the USI-thread and the producer-instruction
number within the USI-thread. Since this information is known at the com-
pile time, the compiler generates the correct operand access code of any
instruction which uses the local data as its input operand.

In the MTD architecture, to determine whether a local value has been
computed means to check whether the corresponding instruction has been
completed. Since instructions are to be executed in a sequential order with-
out branching within any USI-thread, this check can be done easily because
a number of instructions completed within each unit is always known to all

468 Dorojevets & Oklobdzija

units. After completing an instruction, each unit broadcasts a one-bit com-
pletion message to all units including itself. The issue/decode logic of each
unit uses a set of completion counters (one per USI-thread) to keep the up-
to-date information about a number of instructions executed by each unit.
Before issuing an instruction that uses local data as its input operand, the
issue/decode logic compares the producer-instruction number taken from its
operand access field with the corresponding count. Only if the count is less
then the number, the issuing of this and other instructions of the USI-thread
within the unit is to be stopped until the count reaches the number.

The USI-level scheduling model allows multiple instructions to be issued
each cycle, while keeping the issue/decode hardware quite simple.

(b) High level

The MTD model defines the execution of a procedure as a partially
ordered tree of BB-threads, where each BB-thread is a partially ordered
graph of USI-threads. (Below by “threads” we mean “BB-threads.”)

In the model, classic branch operations have been replaced with thread-
based control operations like Fork, Switch, and Stop. Any thread can initiate
eager execution of other basic blocks, i.e., create child threads having data
and control dependencies with the parent thread through the common reg-
ister file and main memory. These child threads can begin their execution
even though not all of their input operands (including control ones) have
been computed yet. The model allows speculative execution of threads,
treating conditional values as operands of yet another type.

The MTD processor has a multiple-context architecture, one context
per active thread. A thread context includes low level activation frames in
the local data and instruction memories (plus a set of the completion coun-
ters) within each execution unit, high-level frames in the common register
(CR) and condition code register (CCR) files, and one thread status register
(TSR). The CR and CCR hardware allocates registers for the contexts in a
way that allows the threads to communicate in the MTD activation tree. A
TSR holds a thread status block containing the thread’s entry and several
bit masks which specify the thread’s input and output dependencies. We
will describe these masks later in detail.

After loading a thread status block, the thread can start its execu-
tion without having to wait for the calculation of its input condition value.
When/if the condition value in the thread’s input CCR turns out to be false,
the hardware will cancel the thread.

While executing, threads share a common set of the execution units.
In each cycle, every unit’s issue/decode logic can deal with multiple USI-
threads working in different contexts. The logic checks the availability of
operands of the threads’ current instructions and then issues one of the
instructions whose operands are available. A multi-instruction word issued

Multithreaded Decoupled Architecture 469

to the units in each cycle is a run-time composition of instructions of one or
several threads.

The task of resolving data dependencies for such a parallel computa-
tion model as the MTD one is a real challenge to the processor architecture
using the common register file for inter-thread communication. The sev-
eral known-to-date hardware algorithms [9-11] cannot be of help since they
issue instructions to execution units and allocate registers to hold their re-
sults in a strict program order. For example, they cannot deal with the
situation when the decode logic encounters the consumer-instruction’s (e.g.
with R1 as its input operand), while the producer-instruction’s (with R1 as
its destination register) which logically precedes to the consumer-one’s has
not been issued yet. Simple solutions like providing each common register
with one full/empty status bit will not be working because the MTD model
allows multiple threads in the dynamic activation tree to communicate via
the same common registers simultaneously. Besides these flow dependencies,
there can be anti- and output inter-thread data dependencies to be resolved
correctly as well.

Enforcing data dependencies in the MTD architecture is achieved by
joint efforts of the compiler and hardware. The model assumes that any
architected (i.e., visible to the compiler) register in the CR and CCR files
may have as many different live instances (versions) as a number of contexts
implemented in the MTD processor. The hardware maps architected reg-
isters onto physical ones via map tables (MTs) at run time. Each thread
context has two MTs, one for the CR and one for the CCR files. Each phys-
ical register has an associated full/empty bit. An actual number of physical
registers is implementation dependent.

A thread has two pairs of source and destination bit masks (one bit per
register) specifying which architected registers in the common and condition
code register files are to be used as its input and output operands. The
goal of introducing these masks is to provide the register renaming hard-
ware with the compiler’s information specifying the thread register usage
pattern. After loading a TSR and before initiating the thread, the hardware
allocates free physical registers (with OFF-values of their full/empty bits) to
the architected ones specified in the destination masks. Simultaneously, the
hardware fetches from the parent thread’s MT the numbers of the physical
registers which hold the current values of the architected ones specified in
the source masks.

For each architected register, there is a MT word containing two fields:
one for reading and one for writing into this register. The read field points
out the physical register from which the current value of the architected reg-
ister can be fetched after writing the value by one of the preceding threads.
The write field specifies the physical register pre-allocated by the renam-
ing hardware to hold a new value to be computed by the current thread.

470 Dorojevets & Oklobdzija

Simultaneously with writing the new value, the unit hardware sets ON in
the physical register’s full/empty bit.

The hardware uses source and destination masks to calculate a refer-
ence count of any physical register and to perform garbage collection in the
register files as well. Also, the hardware keeps the information about regis-
ter usage by any active thread to restore the correct state of computation
when a thread is cancelled. There are two global MTs (one for the CR and
one for the CCR files), reflecting the state of computation of the topmost
(root) thread in the dynamic activation tree. A reorder buffer updates these
global MTs in the logical order in which basic blocks occur in the program.
Whenever an exception occurs, the hardware is able to specify the thread’s
instruction which caused the exception and to restore the state of computa-
tion at the point preceding the initiation of the thread.

To decrease the overhead of applying the MTD thread control to small
basic blocks, the MTD architecture uses a basic block enlargement technique
similar to the El’brus-3’s one [3]. The compiler combines two such blocks in
a way to allow both possible paths of computation to be executed in parallel
within one thread. Then, after calculating the condition value, a merge
operation uses the value as its predicate to select the true path’s results.
This technique also allows to remove all branches within a loop body. After
eliminating internal control dependencies, as many iterations as a number
of contexts implemented in the MTD processor can run in parallel, while
resolving inter-iteration dependencies at run rime. In the mean time, all
the iterations can share the only copy of the loop body code loaded in the
low level local instruction memory, while having separate thread instruction
pointers in each unit.

2.1. An example of applying the MTD approach to a program
fragment. To illustrate the main features of the approach, let us consider
an example of exploiting parallelism within a program fragment consisting
of three basic blocks: the parent BB0 and two alternatives, BB1 and BB2.
Depending on the condition value produced by BB0 (and loaded into the
control register CCR1), the results of only one of the blocks (BB1 or BB2)
is to be taken into account.

The dynamic data-flow graph of the fragment is shown in Fig. 1(a).
Suppose that a MTD-processor contains four execution units, U1-U4, eight
common registers R0-R7, and two control registers CCR0-CCR1. Assume
both Ul and U2 have a unit delay of one cycle to fetch operands, perform
operations, and then write the results in the common registers or their local
data buffers, U3 has a 3 cycle delay, and U4 has a 4 cycle delay. (Delays due
to fetching of instructions are ignored.) Further, suppose that thread status
registers (not shown here) are loaded by Ul. The numbers of instructions
(I1-112) are shown within the corresponding nodes of the graph. Suppose

Multithreaded Decoupled Architecture 471

the execution of Thread 0 is to be committed if the CCRO’s value is 1,
and Thread 1 and Thread 2 are to be committed if CCR1=1 and CCR1=0
respectively. For the example presented, Fig. 1(b) shows the threads’ in-
structions that are generated by the compiler and then loaded by hardware
into instruction buffers of each of the units. Figure 1(c) shows the source and
destination masks to be formed by the compiler for each of the threads, and
Fig. 1(d) shows a cycle-by-cycle diagram of issuing instructions to the units
by the threads. (We supposed that Thread 0 has the highest and Thread 2
the lowest scheduling priorities.)

Source Registers

(r R\2 R3 R4)

Thread 0
CCRO=1

hread 1 -
CCR1=1

Thread 2
CCR1=0

Thread 0
CCRO=1

Thread 1
CCR1=1

‘ v

Thread2 |
CCR1=0 "~

Y Y

Unit 1 Unit 2 Unit 3 Unit 4

F1c. 1(b). Distribution of instructions among the units.

472 Dorojevets & Oklobdzija
General data registers Control registers

RO R1 R2 R3 R4 R5 R6 R7 CCRO CCRI1

Thread 0: SR-mask 01111000
DR-mask 001 11 000
SCCR-mask 1 0
DCCR-mask 0 1
Thread 1: SR-mask 1 01 00O0O0TO
DR-mask 00 00011
SCCR-mask 0 1
DCCR-mask 0 0
Thread 2: SR-mask 00011100
DR-mask 1 00 00O0O0O
SCCR-mask 0 1
DCCR-mask 0 0

SR-mask is a 8-bit source data registers mask,

DR-mask is a 8-bit destination data registers mask,
SCCR-mask is a 2-bit source control registers mask,
DCCR-mask is a 2-bit destination control registers mask.

F1G. 1(c). The source and destination register masks.

Cycles 1 2 3 4 5 6
Unit 1: I 12 17 11

Unit 2; I3 I5 18 110
Unit 3: 14 I9

Unit 4: 16 112

F1G. 1(d). The instruction issue diagram.

3. Related work. A set of ideas proposed and implemented earlier in
in other architectures have influenced the MTD model of execution. We
point out the most significant of the architectures: the data-flow, VLIW,
super-scalar, and multithreaded architecture.

3.1. The data-flow model. A pure data-flow paradigm examines the
entire program graph to find the nodes having all required operands. All
such nodes can be executed in parallel. The model also assumes direct com-
munication of all program nodes. In static data-flow architectures, however,
code replication is necessary for such program entities as loops and function
bodies. In addition, there are other problems concerning the implementation
of actions that are sequential in nature.

In the MTD case, only a part of the program consisting of several basic
blocks will be considered at run time. The data-low mechanism is used
only for passing values between basic blocks (i.e., only at the inter-thread

Multithreaded Decoupled Architecture 473

level). The MTD model also includes sequentiality in issuing instructions
within each USI-thread. The model employs the data-flow idea of direct
communication of nodes within basic blocks, while avoiding code replication
for loops and functions.

3.2. VLIW-architectures. This approach relies upon the compiler to
resolve the problem of enforcing control dependencies in order to enable mul-
tiple operations from different basic blocks to proceed in parallel. There are
several well-known approaches implemented in real VLIW-computers: trace
scheduling, directed dataflow, and basic block enlargement implemented in
Multiflow Trace, Cydrome Cydra 5, and Russian El’brus-3 computers, re-
spectively [1-3]. In trace scheduling, the compiler selects the most likely path
and provides compensation code to restore program correctness if some pre-
dictions were wrong. The directed dataflow approach enlarges each basic
block with operations from other blocks, while equipping all the operations
with predicate operands. The hardware issues only those operations whose
predicate values are true at run time.

The El'brus-3 approach enables both possible paths to be executed in
parallel, while expanding them when necessary with operations from suc-
ceeding basic blocks. To preserve program correctness in this case, con-
ditional stores as well as merge operations are provided. However, VLIW
architectures find it very difficult to schedule statically the events that are
essentially dynamic in their nature, like interactions of a processor with
dynamic memory, interrupt handling, etc.

We consider the VLIW paradigm a radical attempt to address the ques-
tion of how the compiler can help the hardware in resolving data and control
dependencies in a program. In the MTD model, there is no static instruction
scheduling, although the compiler uses the basic block enlargement of small
basic blocks. The compiler provides the hardware with information which
allows the hardware to enforce data and control dependencies at run time.

3.3. Superscalar architectures. Superscalar architectures which use
hardware to identify parallelism at run time enable multiple instructions to
be issued simultaneously [4-8]. To exploit the fine grain parallelism and sup-
port out-of-the order execution within basic blocks, several powerful tech-
niques have been developed and implemented [9-11]. However, the further
expansion of these and other dynamic techniques on processors with a larger
number of execution units requires much more complex logic.

In most cases, the superscalar computers use centralized multi-ported
register files. Supporting simultaneous access to the centralized register
file from multiple execution units is a real challenge for future superscalar
architectures.

474 Dorojevets & Oklobdzija

To address both the questions of the logic complexity and register file
bandwidth, the MTD architecture decentralizes both instruction issue logic
and register memory, distributing them between execution units. At the
compile or run time, the whole computation flow is split into multiple USI-
threads (streams below) to be processed by execution units independently.
A centralized control unit typical for superscalar computers is replaced with
multiple, simpler decode/issue control units, each dealing with one of the
streams only. Meanwhile, a program ordering of instructions within each
stream is preserved. Instead of the centralized register file, a two-level reg-
ister memory is used. The low level consists of multiple local data buffers,
each of which is tightly-coupled with its execution unit. The high level is a
common register file for inter-thread communication.

3.4. Multithreaded architectures. The technique of multithreading
(sometimes called virtual multiprocessing) has been used in several architec-
tures to date. To hide long memory latencies, some architectures such as
the CDC 6600 peripheral processors [10], HEP [12], MASA [13], Horizon
[14], Tera [15], and P-RISC [16], using simple multithreading to switch be-
tween threads in every cycle. Other architectures such as the MARS-M
control processor [17] and APRIL [19] switch to another thread only when a
long-latency memory access occurs. Our approach grows primarily from the
MARS-M architecture [18,3]. The MARS-M approach looks the most aggres-
sive among other multithreaded or multiple context processor architectures,
such as [20-26] that have been proposed to enhance machine throughput via
multithreading.

First, the MARS-M uses decoupling and multithreading to tolerate
memory delays and increase machine throughput, allowing multiple threads
to run simultaneously within the MARS-M’s VLIW processors. At the same
time, these threads share a common set of address and execution units on
a cycle-by-cycle basis. Second, the MARS-M multithreading is merged with
multiple-instruction issuing and pipelining within threads in a way that en-
ables machine throughput and single thread performance to be enhanced
simultaneously. Third, in the MARS-M, several threads can run at the
full speed of pipelines available while issuing multiple operations each, and
thread switching does not result in any bubbles in the pipelines. (Another
attractive feature is that the MARS-M architecture was implemented in a
real computer.)

However, the MARS-M architecture has several weaknesses. First, con-
trol dependencies between fragments are obstacles to parallel execution of
the fragments (i.e., speculative execution is not implemented). Second, at
the first stage of the project, each fragment represented a complex memory
access or execution operation. Before starting a program, each program

Multithreaded Decoupled Architecture 475

fragment written in the MARS-M assembler was to be scheduled statically
by the compiler and then loaded in the distributed instruction memory. The
MARS-M goal of expanding the approach to programs written in conven-
tional high-level languages has not been implemented. Third, the MARS-M
used an expensive crossbar switch to transfer data between instruction and
multiple hardware queues for inter-thread communication.

Two MARS-M ideas have influenced the MTD architecture: 1) the par-
titioning of a whole program into a set of different type fragments having
dependencies that can be resolved at run time. This is being done in the
process of overlapped execution of the fragments by multiple thread pro-
cessors sharing a common set of functional units and 2) representing of the
execution of each fragment as a set of a unit’s specific instruction streams
to be executed by separate functional units.

The ESW model’s ideas of splitting a large instruction window into
smaller windows and using special masks to point out data dependencies
between threads [26] are similar to the MTD ideas concerning the first level
of thread scheduling. In contrast to ESW-threads, MTD threads are simpler
because there are no control dependencies within them. This restriction,
however, makes possible for the MTD architecture to enhance a single thread
performance via decoupling and multithreading (i.e., to address the question
that the ESW model pays a little attention to). Another difference lies in the
method of communication between threads. Similar to Hirata’s architecture
[23], ESW proposes the use of forwarding queues to provide communication
between logically-adjacent iterations (threads) only.

4. Implementation of the MTD architecture. The basic organiza-
tion of the MTD processor is shown in Fig. 2. Logically the processor consists
of four independent logical processors (called slots) sharing one common data
path, which consists of multiple functional units, buses, and caches. Each
slot executes threads in parallel with other slots, receiving and passing val-
ues (when necessary) to/from other slots via floating-point, fixed-point, and
condition code registers (FPRs, FXRs, and CCRs, respectively).

Slot control logic is distributed between identical control modules (CM),
each of which deals with a single functional unit. To provide independent
execution of four threads, there are four sets of instruction (IB) and data
(DB) buffers and registers within each of the control modules.

When a thread management unit instructs a slot to execute a thread,
the unit sends the request to the instruction cache unit (ICU) to fetch the
thread’s code. The instruction cache units fetches the code into its instruc-
tion cache and then transfers up to four 32-bit instructions per cycle along
the four-word instruction bus to the control modules. Each instruction has
a unit field specifying the unit where the instruction is to be executed. The

476 Dorojevets & Oklobdzija

4 Words i‘ 2 Words

ICU Control Module and DCU

ead 1ent Unit

Floating-Point Subsystem

¥ m-Buses

F1G. 2. Bastc organization of the MTD processor.

field, together with the slot-number assigned to the thread by the thread
unit, forms the exact address of the instruction buffer (IB) where the in-
struction is to be written. Instruction buffers within each of the control
modules are interleaved and are capable of writing up to four instructions
per cycle. When all or some of the slots are assigned to execute different
iterations of the same loop, no replication of the loop’s instruction code is
needed. The code is shared by the threads.

The issue logic of each of the slots within a control module fetches
instructions from the instruction buffers, checks the availability of their
operands within the module’s data buffers, and when necessary requests
operands located in other control modules. Communication buses (CFB1
and CFB2, CXB1 and CXB2, for the floating-point and fixed-point subsys-
tems, respectively) are provided to transfer data between control modules.

When the operations’ results are used exclusively within the thread,
they are written in the module’s destination buffer only. However, when the
results are input operands for other threads, it is necessary to write them
into floating or fixed-point registers as well, using the common FPU- or
FXU-buses. The compiler provides a Write Register bit for each instruction
to control such writes. For any of the registers, including the CCRs, a single
assignment rule is used within any thread. The storing of all intermediate
(internal consumption only) values within the registers is eliminated due to
the use of destination buffers for these purposes.

Besides a destination buffer, each control module contains an external
data buffer (EXB) which holds the values computed by other units that are
to be used by more than one of the instructions within the control module.
Since there are no branches within a thread, the compiler knows precisely

Multithreaded Decoupled Architecture 477

how many times and where (by which units), each value is to be used within
the thread. Special write-bits also exist for each input operand field within
an instruction to store such multiply used operands within the module’s
EXB. A FIFO-discipline is used for writing into, and a random access one
for reading from the external data buffers.

For any instruction requiring the operand(s) that have been previously
loaded in the external data buffer of the same module, the compiler (since
it knows how many operands have been written into each buffer at each
moment) provides the address of the operand(s) within the buffer. The
values to be written/read to/from destination buffers are addressed by the
number of the instructions that produced the values.

There are 16 floating-point, 16 fixed-point, and 4 condition code archi-
tectured registers organized into corresponding register files common for all
slots. Up to two registers can be read and one written from/to the register
files in each cycle. Because of the speculative execution of four threads in
parallel, there are output data dependencies between the threads aliased to
the same architectured registers. To resolve these dependencies, an extended
register-renaming mechanism is used, which enables multiple physical regis-
ters assigned to a thread to be released when the thread is squashed.

The data cache unit (DCU) transfers data to/from the floating-point
and fixed-point register files and the load store unit along two M-buses.
However, memory data dependencies are a much more serious challenge to
the architecture than register data dependencies, since a large size of main
memory and run-time calculation of memory addresses makes it impossible
to use a memory-renaming mechanism based on memory usage masks.

There are four main issues to be addressed:

(a) keeping the proper state of memory for speculative execution of four
threads in parallel;

(b) enforcing memory data dependencies both within a slot and across
slots;

(¢) forwarding memory values across slots (or chaining load and store
operations);

(d) recovering the proper state when forwarding/loading of incorrect
values has been identified.

The load/store unit together with the thread management unit provide the
execution of the four tasks at run time.

In performing load operations, the load/store unit considers the data
fetched from memory as results of the unit’s operations and loads them into
its destination buffer. (The data are loaded into floating- and fixed-point
registers only when they are input operands for other threads too.) Thus,
overlapping of load and arithmetic operations for any thread’s internal values
is achieved without using any register renaming mechanism.

478 Dorojevets & Oklobdzija

Each store operation is committed only if the condition code value as-
signed to the thread turns out to be true. Conditional store operations
are provided to support the basic block enlargement technique within a
thread. Such store operations can be committed only when the values of their
condition code operands are true (in addition to the previously mentioned
requirement concerning the thread’s condition value).

A special hardware mechanism is used to forward data across the slots
when it is unknown whether these data will be used by other threads. In
performing any load operation, the hardware compares the load address with
the store addresses of the store operations that have not been committed
yet. This comparison takes place only for the store operations of the threads
logically preceding to the current one in the activation tree. In case of
coincidence in addresses, the value from a store buffer will be transferred as
a result of the load operation. In fact, the store buffer within the load/store
unit operates essentially as a small cache designed to speed up the process of
communication of threads via memory. Since it is known exactly how many
load and store operations are within each thread, and threads are not large
in size, it is possible to implement such an address-compare operation with a
reasonable hardware cost. In performing any store operation, the hardware
can find out that some of the load operations executed previously in the
succeeding threads have used old (i.e., wrong) memory values. In this case,
the thread management unit squashes the threads and starts them again.

5. Concluding Remarks. In this paper we have proposed an archi-
tecture for exploiting fine-grain parallelism through concurrent speculative
execution of multiple basic blocks and decoupling operations within blocks.
In the MTD architecture, the hardware resolves control and data dependen-
cies between threads at run time, using thread register usage masks gener-
ated by the compiler. The architecture allows to implement a decentralized
instruction issue mechanism for a processor with multiple execution units
and exploit multiple forms of parallelism within a procedure.

What is left is to evaluate the feasibility of the MTD architecture. In
particular, we are going to study the correlation between processor charac-
teristics, such as a number of contexts, functional units, buses, and registers,
on the one hand, and the level of available parallelism within programs to-
gether with cost of its exploiting in the MTD architecture, on the other
hand.

REFERENCES

(1] R. P. COLWELL, J. J. O’DONNEL, R. D. PAPWORTH AND P. K. RODMAN. A VLIW
Architecture for a Trace Scheduling Compiler. In The Second Int. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-
IT), Palo Alto, Calif., Oct. 5-8, 1987: 180-192,

[2] B.

3] M.

[] G.

=
o ® a R

[10] J.

[11] J.

(12]

jos)

[13] R.

(14] M.

[15] R.

16] R.

[17] M.

Multithreaded Decoupled Architecture 479

R. Rau, D. W. L. YEN, W. YEN AND R. A. TOWLE. The Cydra 5 Departmental
Supercomputer. IEEE Computer 22 (1), Jan. 1989: 12-35.

N. DOROZHEVETS AND P. WOLCOTT. The El’brus-3 and MARS-M: Recent Ad-
vances in Russian High-Performance Computing. The Journal of Supercomputing
6, 1992: 5-48.

F. GROHOSKI. Machine Organization of the IBM RISC System/6000 Processor.
IBM Journal Research and Development 34 (1), 1990: 37-58.

. EDINA, W. WALKER, J. YETTER AND M. FORSYTH. A High Speed Superscalar

PARISC Processor. In COMPCON SPRING ’92, San Francisco, Calif., 1992:
116-121.

. DIEFENDORF AND M. ALLEN. The Motorola 88110 Superscalar RISC Processor.

In COMPCON SPRING 92, San Francisco, Calif., 1992: 157-162.

. BLANCK AND S. KRUEGER. The SuperSPARC Microprocessor. In COMPCON

SPRING ’92, San Francisco, Calif., 1992: 136-141.

. L. SITES. Alpha AXP Architecture. Communications of the ACM 36 (2), 1993:

33-44.

. W. ANDERSON, F. J. SPARACIO AND R. M. ToMasuLO. The IBM 360 Model

91: Machine Philosophy and Instruction Handling. IBM Journal of Research and
Development 11 (1), 1967: 8-24.

E. THORNTON. Design of a Computer — The Control Data 6600. Glenview, IL:
Scott, Forersman and Co., 1970.

COCKE, G. F. GROHOSKI AND V. G. OKLOBDZIJA. Instruction Control Mecha-
nism for a Computing System with Register Renaming, MAP Table and Queues
Indicating Available Registers. U.S. Patent 4 (992, 938). February, 1991.

. J. SMITH. A Pipelined, Shared Resource MIMD Computer. In 1978 Int. Conf. on

Parallel Processing, 1978: 6-8.

H. HALSTEAD AND T. FuJiTA. MASA: A Multithreaded Processor Architecture
for Parallel Symbolic Computing. In The 15th Annual Int. Symp. on Computer
Architecture, June 1988: 443-451.

R. THISTLE AND B. J. SMITH. A Processor Architecture for Horizon. In 1988
Supercomputing Conf., November 1988: 35-41.

ALVERSON, D. CALLAHAN, D. CuMMINGS, B. KOBLENZ, A. PORTERFIELD AND
B. SMITH. The Tera Computer System. In Int. Conf. on Supercomputing, June
1990: 1-6.

S. NIKHIL AND ARVIND. Can Data Flow Subsume von Nuemann Computing. In
The 16th Annual Int. Symp. on Computer Architecture, June 1989: 262-272.

N. DOROJEVETS. The MARS-M Control Processor, Theoretical and applied prob-
lems in parallel processing, Computing Center of SD of the USSR Academy of
Sciences, Novosibirsk, 1984: 150-160.

[18] Yu. L. VISHNEVSKY. Architectural Features of the Mini-MARS Processor, High-

[19] A.

[20] G.

[21] R.

performance Systems for Data Array Processing, Computing Center of SD of the
USSR Academy of Sciences, Novosibirsk, 1982: 5-33.

AGARWAL, B. H. Lim, D. KrRANZ AND J. KuBiaTowicz. APRIL: A Processor
Architecture for Multiprocessing. In The 17th Annual Int. Symp. on Computer
Architecture, 1990: 104-114.

E. Dappis JrR aND H. C. TorRNG. The Concurrent Execution of Multiple In-
struction Streams on Superscalar Processors. In The 20th Int. Conf. on Parallel
Processing, August 1991: 76-83.

G. PRASADH AND C. WU. A Benchmark Evaluation of a Multi-Threaded RISC
Processor Architecture. In The 20th Int. Conf. on Parallel Processing, August
1991: 84-91.

480 Dorojevets & Oklobdzija

[22] A.

[23] H.

WOLFE AND J. P. SHEN. A Variable Instruction Stream Extension to the VLIW
Architecture. In The 4th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems. ACM Press, April 1991: 2-14.

HiraTA, K. KIMURA, S. NAGAMINE, Y. MOCHIZUKI, A. NISHIMURA, Y. NAKASE
AND T. NisHIZAVA. An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads. In The 19th Annual Int. Symp. on
Computer Architecture, 1992: 136-145.

[24] S. W. KECKLER AND W. J. DALLY. Processor Coupling: Integrating Compile Time

[25] P.

[26] M.

and Runtime Scheduling for Parallelism. In The 19th Annual Int. Symp. on Com-
puter Architecture, 1992: 202-213.

LENIR, R. GOVINDARAJAN AND S. S. NEMAWARKER. Exploiting Instruction-Level
Parallelism: The Multithreaded Approach. In The 25th Annual Int. Symp. on
Microarchitecture, 1992: 189-192.

FRANKLIN AND G. S. SoHI. The Expandable Split Window Paradigm for Ex-
ploiting Fine-Grain Parallelism. In Int. Conf. on Computer Architecture, 1992:
58-67.

