LOGIC SYNTHESIS FOR ASIC:
A GUIDED ALGORITHMIC APPROACH

Michael Q. Le, Vojin G. Oklobdzija
Department of Electrical and Computer Engineering
University of California
Davis, CA 95616
vojin@ece.ucdavis.edu
(916) 752-5634

ABSTRACT

In this experiment, several circuits are designed using logic synthesis based on
a behavioral model and a description based on a structured algorithmic
approach. The results produced by logic synthesis based on the two different
VHDL description styles are compared. The circuits are generated using
Synopsys [2] tools and LSI Logic 300K ASIC technology as the target library
[1]. The implementation based on the structured algorithmic description
showed considerable improvement over the results produced by the behavioral
model. With this experiment, we identify and point out the weaknesses
associated with logic synthesis. The purpose of this experiment is to show that
logic synthesis tools should not be used "blindly" and that imposing hierarchy
and modularity in the design is very important in terms of regular layout and
efficiency. Given that identification of hierarchy and modular design require
an intelligent analysis, we feel that this is the major weakness of the logic
synthesis approach in design. We are able to point out a direction for
improvement and creation of intelligent logic synthesis tools.

1. INTRODUCTION

As a basis for comparison, the Leading Zero Detector circuit is selected. It is a circuit common to any
normalization operation. Normalization consists of an appropriate left shift until the first non-zero digit is in
the left-most position. The amount of shift is determined by counting the number of zero digits from the left-
most position until the first non-zero digit is reached. A special circuit implemented (in hardware) to detect
the number of leading zeros is referred to as a Leading Zero Detector (LZD) [3]. A characteristic of the LZD
circuit is that its functional description is very concise. This fact makes it is very easy to describe the circuit
using any of the VHDL Hardware Description Languages. On the other hand, design of such a circuit
(especially for a large number of bits) is very cumbersome and difficuit if no structure or algorithm is imposed
in the design. Applying a straightforward combinatorial approach in designing the LZD circuit is a rather
complicated process. The reason behind this problem is that each bit of the result is dependent on all of the
input bits. In the case of a 32-bit word, the LZD would have 5 outputs, each dependent on 32 inputs. It is
obvious that such large fan-in dependencies are a problem and that the resulting circuit is likely to be
complicated and slow. To design such a circuit using computer aided Boolean minimization techniques or the
Karnaugh map method is cumbersome and slow, and the resulting design does not exhibit any structure. On
the other hand, this circuit is a very good candidate for Logic Synthesis. The functionality of the circuit can be
described in VHDL, and a computer can do the rest of the work. However, we can use some insight and
cleverness in designing the circuit. This particular circuit is quite suitable for exploring possibilities of
hierarchical and structural design. Imposing hierarchy and structure would bring forth substantial
improvement of the circuit regularity and speed, as compared to straight forward minimization. The resulting
circuit is characterized by good performance and low and regular fan-in, which leads to better wireability and
layout. Logic synthesis tools have not yet reached a level of sophistication to where they can deal with
hierarchical structures or create and impose hierarchy in the design. Rather, their approach is to expand the
logic in one level and optimize it via elaborate and laborious logic minimization, often using hours of CPU
time. Therefore, the design presented in this paper not only results in an efficient and fast LZD but also
provides an efficiency measure of the Logic Synthesis tools and their limitations [3].

2. DESIGN USING AN ALGORITHMIC APPROACH

We used the inherent hierarchy associated with the leading zero detection process in order to create a
hierarchical and modular design. In the design process, we skipped the 2-bit LZD blocks and build the LZD
circuit starting with 4-bit blocks, which eliminates one extra level. Each 4-bit block has one "V" output bit
and two "P" output bits. The "V" bit is '0' when the four input bits are '0000" and is '’ otherwise. The "P" bits
output the number of zeros encountered in that portion of the input vector. We can now take two 4-bit blocks
to form an 8-bit LZD circuit using an 8-bit block that implements the algorithm shown in Figure 2.0. This
concept can be expanded up to higher levels to form LZD circuits of any 2N size [3]. The circuits produced
from the algorithmic description are only one logic level deep, resulting in very fast N-bit blocks. The
description for the 16-bit block and the resulting circuit produced by Synopsys tools are shown in Figure 2.1
and Figure 2.2, respectively.

3. LOGIC SYNTHESIS EXPERIMENT

We implemented two sets of LZD prototypes of sizes 16, 32, and 64 bits that were built from the two different
VHDL description styles. The first set of circuits is synthesized (using the Synopsys Design Compiler) from
its straight-forward behavioral description. The second set is synthesized using a guided and structured
description based on the previously described algorithm. The results of those two approaches to logic
synthesis are compared in terms of their mapping into a target technology. The target technology in our case
is LSI Logic LCA300K [1]. Though the results might vary from case to case and with the target technology
used, we feel that the general principles and results will remain the same.

3.1 SYNTHESIS USING BEHAVIORAL DESCRIPTION

The LZD circuit is described by a behavioral VHDL model. This description is then synthesized using the
Synopsys Design Compiler and LSI Logic 300k technology as the target library. The if-then-else construct is
used to describe the circuit, which results in a concise functional model of the circuit behavior. The
description of the 32-bit LZD is given in Figure 3.1.

3.2 SYNTHESIS USING GUIDED STRUCTURAL DESCRIPTION

In this case, we guide our VHDL description with an algorithm for efficient generation of the LZD circuit. We
impose hierarchy in the design by building several components which implement the algorithm and then map
them together to form the LZD. This is done by describing the functionality of the individual blocks in
VHDL, synthesizing them using Synopsys tools, and then mapping them together using the structural VHDL
description style. We start the hierarchical structure by using 4-bit LZD blocks. The outputs of the 4-bit
blocks are then connected to the 8-bit blocks, and so on, which implement the algorithm. For the 32-bit case,
the blocks are mapped together to form the hierarchical structure shown in Figure 3.2.

4. PERFORMANCE

For the 32-bit LZD, the "behavioral description” resulted in an area of 564 normalized cell units (where 2-
input NAND area is treated as one cell unit) and a nominal delay of 4.35 ns while the "guided structural
description" yielded 426 normalized cells and a delay of 2.73 ns. The improvement in using the guided
structural description is exhibited by 24% area reduction and 37% speed improvement for the 32-bit case. The
other cases, 16 and 64 bit, yielded improvements using the guided structural description as well. The
improvements in performance, measured in terms of nominal delay and total area, increase as the LZD bit size
is increased. Results for the two description styles are shown in Table 4.1 and Table 4.2. It is important to
note, however, that in certain cases, the logic synthesis tools produce very good circuits from the behavioral
descriptions. In the case of implementing small finite state machines, such as simple controllers, the logic
synthesis tools can produce smaller and faster circuits than the ones realized by trying to apply structure. The
reason for their efficiency, in these particular cases, is that the heuristics used by the logic synthesis tools can
easily deal with minimizing the number of states and covers needed in relatively small designs. But, in more
complex cases where there is a fairly large number of inputs, like the LZD example, the heuristics used are
simply not enough to solve the problems efficiently.

5. CONCLUSION

In this paper, we have compared the performance of circuits produced by logic synthesis tools for two different
design approaches. The first one involves a straight forward behavioral model that is concisely translated into
VHDL and then synthesized. The second one is based on a critical analysis of the problem and an
identification of a proper algorithm and structure. This approach results in a description that guides the
synthesis process and imposes hierarchy on the design. For all cases, the implementations based on the guided
structural descriptions resulted in considerable advantages over the results produced by the purely behavioral
models. The improvements over the behavioral models increased as the size of the LZD circuit was increased.
With this experiment, we identify and point out the weaknesses of logic synthesis. We have shown that logic
synthesis tools should be used judiciously and that imposing hierarchy and modularity in a design is very
important in terms of area and speed. The lessons learned apply not only to this particular design, but
generally indicate that careful analysis of a problem and clever management of the hierarchy pays big
dividends in terms of the performance of critical circuits. Although very useful, logic synthesis tools are still
not capable of managing hierarchies or making intelligent choices when it comes to design. Therefore, they
should be used and treated accordingly.

REFERENCES

[1] LCA300K Compacted Gate Array Products Databook, LSI Logic Corporation, October 1993.

[2] Synopsys Inc., Synopsys Design Analyzer Reference Manual, Version3.0b., June 1993.

[3] V.G. Oklobdzija, “An Algorithmic and Novel Design of a Leading Zero Detector Circuit: Comparison
with Logic Synthesis”, 1IEEE Transactions on VLSI Systems, Vol.2. No.1., March 1994.

Algorithm for generating LZ count:
(1) Form the pair of bits B;, B, | for i=0 to N-2
(2) Determine P and V bits for each pair
(3) For the next level, determine the Pg and Vg bits as a function of
two pairs of inputs P and V in this level in the following way:
Vg = Vj+ V,.where "+" is the OR operation of the left and right inputs
if Vi=1then Pg =0, P| where "," designates concatenation
else Py =1, P,
Repeat step (3) log(N) -2 times
Figure 2.0. Algorithm for generating LZD.

entity complé is |
port (PL, PR : in BIT_VECTOR (2 downto 0); e
VL, VR : in BIT; s
PG : out BIT_VECTOR (3 downto 0); e
VG : out BIT);
end compl6;

UX2 1Y

PR 12: 81— FragUX2 L

architecture func16 of compl6 is ot

begin
VG <= VL or VR;

if(VL="1") then R

PG(3) <="'0";

PG(2 downto 0) <= PL(2 downto 0); L

PG(3)<="1"; P
PG(2 downto 0) <= PR(2 downto 0); 3 O TN
end if;
end process; o= “ G
end funcl6; VR[>

Figure 2.1. VHDL description of the 16-bit block. Figure 2.2. Synthesized 16-bit block.

begin
PLIZ: 81— . T
process (PL, VL, PR, VR) $—{>rGi3:0)

UXZ 14

PGl

else

entity LZD_BEH32 is
port (1. in BIT_VECTOR (31 downto 0); e
O : out INTEGER range 0 to 31; ‘
E: out BIT); T J i
end LZD_BEH32; ’ revtin fom
architecture BEHAVE32 of LZD_BEH32 is g
hegin] :
process (1) Ledfa_zl |
begin — | i
if (1(0) = 'I') then i I |
O<=0;, E<="'l} i3t I T—t]
elsif (I(1 downto 0) = "10") then — _1'2”4"3 ! :‘ rie "'fo‘
O<=1; E<=} 1 —
elsif (1(2 downto 0) = "100") then: LzdBa1 ‘
0<=2; E<=1% |
ot |~ ;
Tzod-1 zd162-G— 1‘
else E<="0" L
end if; lzd82-8
end process; ?_H—.é[
end BEHAVE32; o

Figure 3.1. Behavioral VHDL description for the LZD. Figure 3.2. Hierarchical 32-bit LZD circuit.

Table 4.1. Nominal delay of the LZD circuits

VHDL 16-bit LZD 32-bit LZD 64-bit LZD
behavioral 2.75 ns 4.35 ns 6.50 ns
guided-structural 2.24 ns 2.73 ns 3.35 ns
Improvement 19 % 37 % 48 %

Table 4.2. Normalized Area {N units] of the LZD circuits

VHDL 16-bit LZD 32-bit LZD 64-bit LZD
behavioral 241 564 1308
guided-structural 208 426 861
Improvement 14 % 24 % 34 %

Nominal Delay (ns)

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00}

M Guided-Struct VHDL

2.24

0.00

{7 1Behavioral VHDL

6.50
7

4.35
7
3.35
2.75 2.73
16 32 64

Number of Bits

Figure 4.1. Speed comparison.

Area (N units)
o]

1400
1200
1000
800
600 -
400

208 241
200+

MM Guided-Struct VHDL

564

[Z Behavioral VHDL

1308

7

16

32
Number of Bits

64

Figure 4.2. Area comparison.

