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Abstract

The Booth encoding method is evaluated in this paper.
Although generally used in parallel multipliers, we show
this scheme to be obsolete due to the improvements in bit
compression trees. The number of gate levels with and
without Booth encoding is compared when 4:2
compressors are used. It was found that a single row of
4:2 compressors reduces the number of partial products
to one half, which is the essential function of the Booth
encoding technique. We have found that a single row of
4:2 compressors achieves this reduction in less time and
with fewer gates used. The case of 2's complement
representation is discussed.

1. Introduction

Ever since its first introduction Booth encoding [1] bas
been a popular technique used to reduce the number of
steps in the iterative multiplication process. From there it
has by default found its way into the parallel multiplier
implementation. The application of Booth recoding
results in a reduction of the number of partial products by
a factor of two in the initial step. That fact lead to an
immediate acceptance of the Booth recoding technique in
parallel multiplier implementations without even properly
evaluating the technique. Though some authors have
raised doubts about it [7] no one has done an in-depth
analysis and comparison with other alternatives to
reducing the number of partial products. In this paper we
evaluate Booth encoding with respect to the use of 4:2
compressors and show that the same reduction can be
achieved in less time and complexity. This finding is not
only true in the case when 4:2compressors are used but
can be extended to the use of higher order families.
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We have also shown that the same is true for the use of
(3,2) counters in optimized Wallace Tree structures [12].
This finding comes from the fact that an equivalent
amount of logic of a properly connected (3,2) counter will
also reduce a number of partial products by one half in
less time than when Booth recoding is implemented.

2. Booth-MacSorley recoding

The Booth algorithm [1] is widely used in the
implementations of hardware or software multipliers
because its application makes it possible to reduce the
number of partial products. It can be used for both sign-
magnitude numbers as well as 2's complement numbers
with no need for a correction term or a correction step.

However, the Booth algorithm, if applied in its original
form, produces the partial products, the number of which
is data dependent and therefore not predictable. Though

-this feature does not represent a major problem in the

software implementations of the algorithm, it is
incompatible with the parallel implementations of the
multiplier.

Table 1. Modified Booth recoding

X4 2Xi g 1% Add to partial
product
000 +HY
001 +1Y
010 +1Y
011 +2Y
100 -2Y
101 -1Y
110 -1Y
111 -0Y




A modification of the Booth algorithm was proposed by
Mac-Sorley [2] in which a triplet of bits is scanned
instead of two bits. This technique has the advantage of
reducing the number of partial products by one half
regardless of the inputs. This scheme is summarized in
Table 1.

The recoding is performed within two steps: encoding
and selection. The purpose of the encoding is to scan the
triplet of bits of the multiplier and define the operation to
be performed on the multiplicand, as shown in Fig. 1.
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Fig. 1. Modified Booth recoding.
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This method is actually an application of a sign-digit
representation  in  radix4. The Booth-MacSorley
algorithm, usually called the Modified Booth algorithm or
simply the Booth algorithm, can be generalized to any
radix. For example, a 3-bit recoding would require the
following set of digits to be multiplied to the multiplicand
: 0, £1, £2, £3. The difficulty lies in the fact that +3Y is
computed by summing (or subtracting) 1 to +2Y, which
means that a carry propagation occurs. In spite of the
speed improvement in the implementation of addition, the
delay caused by the carry propagation renders this scheme
to be slower than a conventional one.

Consequently, only the 2 bit Booth recoding is used and
therefore considered in this paper. Therefore, our
discussin in this paper is limited to the use of radix 4 and
it does not include comparisons with some higher radix
Booth algorithms [13].

2. The 4:2 compressor

Several attempts to find repeatable patterns in Wallace
trees [3] have been made, leading to the notion of
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compressors such as 5:2 or 9:2 [4, 5]. The notion of
compressors has been a major departure from the
traditional notion of Dadda counters, since they require
the use of Carry-In and Carry-Out signals. However, the
propagation of the signal is limited to 1 bit by rendering
the Carry-In and the comresponding Carry-Out
independent. The most popular compressor is actually the
4:2 compressor, introduced by Weinberger [6] and used in
[7-10].
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Fig. 2. Structure of the 4:2 compressor built with Full
Adders

The structure of the 4:2 compressor is shown in Fig. 2.
The major advantage of the use of this cell is that it allows
a high regular layout. Indeed, the 2-to-1 reduction of the
cell leads to a symmetric and regular compression tree.

However, since this cell is built with Full Adders, there
is no improvement compared to the usual Wallace tree. It
is fair to say that this scheme is even worse than a
Wallace tree for a particular width of the multiplier. For
example, if we consider that the critical path of a Full
Adder is 2 XOR, and the number of levels of 4:2
compressors is 4 for a 24-bit multiplier, then the critical
path of such a multiplier is 16 XOR. This number has to
be compared with 14 XORs resulting from the application
of 7 Full Adder levels in the case of a regular Wallace
tree.

Consequently, several designers tried to redesign the
4:2 cell in order to reduce the critical path [9, 10]. An
example of a redesigned 4:2 resulting in a 3 XOR critical
path is shown in Fig. 3. This reduction occurs only on the
path involving the Sum signal of the cell.
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Fig. 3. Logic of a redesigned 4:2 compressor

However, as shown in Fig. 4, the path involving the
Carry-In and the Carry-Out is also equivalent to 3 XOR
gate delays. In other words, the worst case to cross a level
of 4:2 compressor is 3 XOR.

Critical Path #1 =3 XORs

Critical Path #2 = 3 XORs

Fig. 4. Critical paths in a row a 4:2 compressors

3. Booth recoding versus the use of 4:2
COMpressors

Booth recoding necessitates the intermal use of 2's
complement representation in order to efficiently perform
subtraction of the partial products as well as additions.
However, floating point standard specifies sign magnitude
representation which is also followed by most of the non-
standard floating point number representations in use.
Thus, we assume the use of sign magnitude representation
and compare those multiplier implementations using
Booth encoding with the ones not using it but resorting to
efficient partial product addition techniques such as the
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use of 4:2 compressors. The conclusions are summarized
in Table 2.

The advantage of Booth recoding is that it generates
only half of the partial products compared to the
multiplier implementation which does not use Booth
recoding. However, the benefit achieved comes at the
expense of increased hardware complexity. Indeed, this
implementation requires hardware for the encoding and
for the selection of the partial products (0, £Y, +2Y). An
optimized encoding is shown in Fig. 5. The multiplexers
and buffers are considered to be equivalent to an XOR
gate. This implementation is then equivalent to one level
of XOR gates and one level of AND gates.

The selection can be implemented with a simple 5 input
multiplexer, which is roughly equivalent to 3 XOR gates.
However, since one input is grounded, this circuit can be
designed with only a 4 input multiplexer, that is 2 XOR
gates, and an AND gate. In this case, the Booth recoding
circuit is equivalent to 3 XOR plus 2 AND gates.
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Fig.5. An Optimized Encoding Circuit

On the other hand, reducing the number of partial
products by one half can be achieved with one level of
AND gates and one row of 4:2 compressors. The 4:2 cell
is designed with 3 XOR levels of delay as shown in Fig.
3. and implemented in [9,10]. The use of higher order
compressors [5] would furter lower this delay.

However, the main disadvantage of the Booth
technique is the complexity introduced by the internal use
of 2's complement representation which is necessary to
compute negative partial products. Indeed, since the
Booth recoding method calculates -Y and -2Y, it needs to
extend the sign of negative partial products. It further
needs to complement Y when -Y or -2Y is requested, that
istocalculate —-Y = Y +1 where Y means inversion of



every bit of Y. Consequently, two extra bits are necessary
in the scheme: one for the sign extension and one for
conversion into 2's complement. Both of the bits will be
placed in the same row, therefore not increasing the
number of rows. However, the correction bit (which is
needed for correct sign calculation) will be placed right in
the middle of the multiplier tree, therefore not only
increasing the number of rows by one but creating this
increase in the worst possible place, i.e. in the critical
path of the multiplier.

Table 2. Comparison of sign magnitude number
multiplication using Booth encoding and sign-magnitude
number multiplication not using Booth encoding.

With Booth encoding Without Booth
encodin,
Internal representation : | Internal representation
2's complement (some : sign magnitude (all
partial products need to | the partial products are
be subtracted). positive).
Hardware for encoding One row of 4:2
and selection COMPressors
Sign extension. Only a XOR is used to
compute the sign in
parallel.
2 extra bits (sign No extra bit.
extension and
complementation).
The normalization The normalization and
requires some Leading even the rounding are
Zero Detectors and easy [5].
Leading One Detectors.
The schematic and the The simplicity of the
layout are not regular. schematic allows a
highly regular layout.
1 XOR (encoding) plus 3 | 1 AND (partial product
XOR (multiplexer) generation) plus 3 XOR
equals 4 XOR. (4:2 compressor).

4. Conclusion

When Booth recoding is used, the schematic and the
layout of the resulting implementation are less regular
leading to a more difficult design or VHDL description.
In terms of speed, the Booth technique is at best equal or
worse than the use of the 4:2 compressors. In case of 2's
complement representation and without Booth encoding,
the last row of partial product (depending on the sign of
the multiplier) is generated by using an AND gate with an
inverted input. In other words, the number of gate levels
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is the same as in the sign magnitude case. However, in 2's
complement case the sign extension is still needed. This
feature makes the two schemes comparable. The scheme
which does not use Booth encoding is slightly better
because of the simplicity and the fewer number of gate
levels.
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