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Abstract. In this article we consider a design of a multiplier for the multiplication of complex numbers. The com-
plex numbers are packed into one 32-bit word. They are represented by two 13-bit parts with the same 6-bit expo-
nent. Multiplication of complex numbers is examined from the perspectives of performance, complexity and silicon
area. The design is unique and combines shared Booth encoding for the real and imaginary parts including only
one combined modified Wallace tree of 4:2 adders for each part. The regular Wallace tree is compared with the
tree of 4:2 adders. This design results in a more compact wiring structure and balanced delays resulting in a faster
multiplier circuit. The number of adders used in the multiplier is also reduced. We consider VLSI CMOS technology
and the relevant characteristics as they impact the implementation and performance.

1. Introduction

The need for Digital Signal Processors (DSP) has in-
creased as a reflection of the increase in processing
power and capabilities, and also as a result of switch-
ing from analog to digital signals in a wide range of
applications.

In order to increase their dynamic range, there is
a need to represent signals in floating-point number
representation and perform the operations as floating-
point operations. Given the fact that we represent sig-
nals as complex numbers, operations on complex num-
bers represent a large part of DSP operations. Since
multiplication of two complex numbers is a very fre-
quent operation in many signal processing algorithms,
we have concentrated on an efficient hardware imple-
mentation. Our particular application is based on real
time ambiguity function computation as discussed in
(1.

However, the need for specific high-speed floating-
point operations, long numbers and accuracy is present
in many other DSP specific applications. Complex
number operations have been usually performed as a
sequence of common operations. For example, complex
number multiplication of two complex numbers W =
(a + ib) and Z = (¢ + id) is usually done with 4 mul-
tipliers (each contains one adder) and 2 final adders
(FA) as:

(@ + ib)(c + id) = (ac — bd) + i(ad + bc) (1)

or it is performed sequentially passing the operands
through the available arithmetic units in the data path
(usually one multiplier and one adder).

To reduce the number of multipliers, it is proposed
to share multiplication by calculating the real and im-
aginary parts in the following way:

RelP] = (@ — b)d + a(c — d)
Im[P] = (@ — b)d + b(c + d) 2

However, both methods need one adder and require the
resolution of normalization problems after each multi-
plication, wasting both time and accuracy.
Multiplication of complex numbers using a parallel
multiplier has been investigated by Pekmestzi [3]. In
his work Pekmestzi represents complex numbers by
merging them into two bits (for each bit position) rep-
resenting real and imaginary part. His complex number
adder is designed with this representation in mind,
which essentially results in an integrated network of
two adders merged into one. He uses the same approach
for multiplication where he realizes the subtraction
function inside the Wallace tree. His multiplier is a
parallel Wallace tree multiplier composed of two multi-
pliers of the same type merged into one. The final adder
is a ripple-carry implemented in the last stage of the
parallel multiplier network. The complex number
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multiplier by Pekmestzi does not take advantage of
higher order counters such as 4:2, nor does it consider
possibilities of speeding up the final addition step.

Another complex number multiplier was reported
by Akinwande et al. [4]. It is a very fast implementa-
tion in GaAs heterostructure FET technology and there-
fore the level of integration is fairly low, resulting in
only partial implementation of the multiplier. It accom-
plishes the complex number multiplication operation
in several alternative steps each of which consists of
3 pipeline stages. Their throughput is high, producing
a complex product every 8 nS and operating at the clock
rate of 520 MHz. However, their implementation uses
a regular Wallace tree and CLA adder in the final stage.
Therefore the speed of this multiplier is achieved only
due to the application of very special technology and
not to any use of sophisticated multiplication scheme.

The other approach reported by Shyu et al. [S] ac-
complishes complex number multiplication with only
two integer multiplications. Their scheme is based on
the use of a Quadratic-Polynomial Fermat Residue
Number System (QFNS) which in our case has very
little practical value.

It is also possible to use the CORDIC algorithm for
the computation of the product of the two complex
numbers by properly initializing the sequence of the
shift and add operation with the table-lookup [6]-[8].
We have not considered CORDIC for this implementa-
tion, though this algorithm warrants further studies for
the DSP computation due to its specific properties.

2. Architecture

The multiplier is to operate on two complex numbers
and produce the result in one cycle. The complex num-
bers are packed in one 32-bit word with the real and
imaginary parts sharing the same exponent. This is
done to efficiently utilize memory. It is also considered
that this format provides an ample range and sufficient
precision for most DSP real-time applications. In our
particular implementation [1]-[2] we eliminated nor-
malization after each multiplication, becuase normali-
zation and rounding are slow processes. Our approach
is advantageous because it uses only one rounding and
normalization after the final adder.

The representation of complex numbers is given in
figure 1. Multiplication of two complex numbers is per-
formed by first separating exponent parts and adding
them together.

The numbers are assumed to be normalized to the
greater of the two: real and imaginary parts. The sum
of the exponents becomes the exponent of the result.
It is clear, given one common exponent for both the
real and the imaginary part, that the produce could
result in a non-normalized number. Further, when nor-
malizing the product term with the common exponent
it is only possible to normalize it with the respect to
one of the parts: real or imaginary. We have chosen
to always normalize to the bigger one, i.e., we will shift
the result left until one of the parts becomes normalized.
Given that this is not a sequential process (that can be
accomplished in one cycle) the post-normalization proc-
ess can be quite elaborate. First, we have to count the
leading zeros (ones) in both parts. Second, we need
to determine the smaller of the two leading zeros and
use this number to left-shift both the real and imaginary
part and subtract this number from the exponent. This
operation needs to be accomplished in one cycle and
it involves comparison, leading zero detection, shifting
and subtraction, figure 2.

The multiplication algorithm that we used operates
in a rather standard fashion. It uses Booth encoding
[9] to reduce the number of partial products and the
Wallace Tree method [10] to sum the partial products,
reducing them to two operands which are added in a
fast carry-propagate adder in the final stage. Normaliza-
tion is performed in the following cycle.

M. Santoro has shown that the distribution of the
silicon area occupied by the multiplier can be divided
into approximately four quarters [14]-[15]. One quarter
of the layout area is devoted to the Booth encoding logic,
one for the Wallace Tree, and the other two for the final
adder and wiring channels, respectively. In our case,
we share Booth encoders for the real and imaginary
parts by Booth encoding terms a and b where a as well
as b are used to form a product with ¢ and d. The real
part of the complex product is formed by subtraction,
ac — bd, while the imaginary part is formed by sum-
mation, ad + bec. The most direct solution would
be to implement Wallace trees separately for partial
products and add the results separately as shown in

6-bit Exponent ~ Sr ‘ 12-bit Real Part

S;

12-bit Imaginary Part

Fig. 1.Representation of the complex number in one 32-bit word.
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figure 3a. The better solution is however, to use one
merged Wallace tree and perform addition (subtraction)
inside the Wallace Tree as a part of bit reduction proc-
ess, as shown in figure 3b, thus avoiding the increase
in the number of levels [2]. The fact that both Booth
encoded operands a and b are each being multiplied
by ¢ and d allows us to lay the multiplier out in a com-
pact quadrant structure.

The main structure of the multiplier is shown in fig-
ure 4. By sharing Booth encoders and merging the addi-
tion (subtraction) into a combined Wallace tree, we
estimate that about 10% in area (wiring not included)
has been saved. In addition multiplier speed has been
increased.

Handling the sign in this multiplier has been achieved
by proper encoding of sign bits and carrying 3 extra
bits: two for the encoded sign, and one for the carry
in associated with the complementation of the number.
An additional bit is inserted in the 14th bit position of
each of the product trees to be summed. This leads to
an elegant way of performing parallel multiplication of
positive and negative numbers using Booth encoding
without using sign extension nor a correction term.

Finally, the reduced partial products from that
Wallace tree are added in the fast Final Adder (FA).
This adder is designed to take advantage of the specific
profile of the signal arrival times that are origination
from the Wallace tree.
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Fig. 4. Organization of the multiplier.

3. Implementation of the Wallace Tree

The best known technique for summation of the partial
products has been the use of Wallace trees [10], which
are usually implemented by using full adders. They are
also referred to as 3:2 counters because they take 3 in-
puts of the same weight and produce two outputs of two
different weights. By weight, we refer to the value asso-
ciated to the position of the digit. This is the simplest
and most straightforward technique. However, the lay-
out of such a tree is not regular. It takes more space
and utilizes wires of different and irregular lengths.

The Wallace tree can be implemented using a variety
of counters and several schemes have been proposed,
the best known being Dadda’s scheme [11]. The use
of larger size counters and combination of different
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types has been discussed in [12]. The 7:3 adder is
similar to the use of the full adder in concept, but it
results in more efficient implementation. Though more
efficient, their advantage begins to show only with
Wallace trees bigger than the one used in this particular
case. We considered only a Wallace tree built from full
adders and a tree of 4:2 adders as proposed by Santoro.

Recently, Santoro used 4:2 counters [14] and the
same approach has been followed by Nagamatsu et al.
from Toshiba Corporation in their 54X54b multiplier
implementation [16]. It should be pointed out that the
idea of using 4:2 counter (compressor) was disclosed
by A. Weinberger in 1981 [13]. They are a special case
of 3:2 counters or full adders differing only in the im-
plementation and in the way adders are interconnected
inside the 4:2 counter. The 4:2 counter has 5 inputs
(4 partial products and a carry input) and 3 outputs (2
carry outputs and the sum). A good feature of the 4:2
counter is that the carry output does not depend on the
carry input and that the two carries have the same
weight. Therefore, there is no carry propagation from
far right to left but inside only two adders. The 4:2
counter used by Santoro results in the longest path
equivalent to 4 XOR gate delays. Multiplier design by
authors from Toshiba Corp. [16] uses a specially de-
signed 4:2 counter with reduced delay.

The Wallace tree is not regular and is difficult to
be wired. Santoro has shown that the Wallace tree can
be better in terms of wireability by using 4:2 adders.
We have implemented both Wallace trees: Regular
Wallace Tree (RWT) using 3:2 counters and Modified
Wallace Tree (MWT) using 4:2 counters. The wiring
complexity of each is illustrated in the wiring diagrams
of RWT (figure 5a) and MWT (figure 5b).

Comparing both trees, we realized that the tree of
4:2 adders has almost one half of the levels (of used
counters) compared to the RWT built from the full
adders. However, in terms of the gate delays each 4:2
counter stage of MWT is similar to a delay equivalent
to 4 XOR gates. On the other hand, the Wallace tree
stage built from the full adders, RWT, is comparable
to 2 XOR gate delays. Therefore, the use of 4:2 counters
is considered almost equivalent to RWT in terms of the
delay. The only recognized advantage of 4:2 counters
is in their use resulting in more regular layout. To take
full advantage of 4:2 counters, we designed a special
4:2 counter cell using available ASIC cells, as it was
done by the authors from Toshiba [16]. We call it Re-
duced Delay Counter (RDC), resulting in only 3 XOR
equivalent gate delays. The RDC cell is shown in fig-
ure 6. The resulting RDC 4:2 cell is larger (in terms

of equivalent gates, 30 versus 20) for the 25 % increase
in speed of the resulting Wallace tree. The signal arrival
time resulting from such a Modified Wallace Tree
(MWT) shows more even profile which is the result
of the optimization and passing of the carry signals.
The signals from MWT tree arrive sooner than the ones
from the RWT. The signal arrival profiles for the RWT
and MWT are shown in figure 7.

The resulting multiplier shows an overall advantage
in speed over the one using RWT. We think that for
the longer operands one could further optimize the FA
given that the end effects of the different signal arrival
times will still exist. The speed advantage of such a
modified tree in terms of the delay over a regular
Wallace tree will increase with the increase of the
operand length giving an additional advantage to our
approach.

We also realized that the delay of the RDC shows
sensitivity to the inputs, i.e., that the delay is different
for different input to output path. This opens an oppor-
tunity for further speed optimization by selecting which
input to output combination to use in a particular MWT
realization. However, this would require either a sophis-
ticated placement and wiring tool or “manual interven-
tion,” and it was not considered for that reason.

3.1 Signal Arrival Time in the Multiplier

Signals originating from the Wallace tree arrive at the
output in very different times. It was observed that they
arrive sooner at the ends of the multiplier tree, while
the signals in the middle of the tree arrive last [17]. The
ideal situation would be to trim some of the delay from
the middle of the tree and distribute it toward the ends.
This optimization process would yield a more balanced
tree and shorten the longest path. Such an approach
has been first taken by K. Pang et al. of LSI Logic Cor-
poration in the implementation of their MACGEN tool.
Their tool automatically generates optimized netlist and
compact layout for multiplier-accumulator implemen-
tations [17].

On the least-significant bit end not much can be done
and the resulting signal arrival profile will always have
a positive slope starting from the least-significant bit. In
the middle part we can reroute some of the signals, so
that they end up in the most-significant part of the mul-
tiplier tree. This can be achieved by using limited carry
propagation. Such an approach is described in [22].

As far as the use of 4:2 counters is concerned, the
in-out carry signal does just that for one bit position.
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The carry path is faster than the sum and this explains
why the peak (maximum) of the resulting signal arrival
profile is shifted to the right and slightly faster in MWT,
as compared to RWT. This applies for the use of regular
4:2 counters. Use of the RDC will result in an even
faster MWT.

In our implementation two types of Wallace trees:
one using 3:2 (RWT) and the other using using 4:2
(MWT) counters are compared with respect to their
delays and signal arrival profile. Their corresponding
wiring diagrams are shown in figure 5. The use of 4:2
counters results in a more balanced signal arrival pro-
file compared to the one using 3:2 counters (figure 7).

The distribution of delays in our multiplier design
shows 13.2 nS from Booth encoding to the FA input
(15.1 nS using RWT) as shown in figure 7. For multi-

LA - f"}——‘ cour
!

pliers with wider operands this difference would be
larger. The difference is attributed to the change in the
signal paths in the tree. If we use 4:2 counters or design
special counters with higher compression ratios, the
critical paths will be moving from the vertical direction
toward horizontal, thus adding the delay to the end bits
and taking it away from the middle bits. With the proper
mix of counters, we believe it is possible to design a
Wallace tree exhibiting a balanced signal arrival as
shown in [22].

4. The Final Adder

In the last stage of the multiplier we used a Variable
Block Adder (VBA) [19]-[20]. The VBA scheme uses
carry-skip technique to pass the carry over the group
of bits (blocks) which are adjusted in size in such a way
that the resulting delay is minimized. This scheme
makes it possible to achieve good performance without
much additional logic. Another reason for using a VBA
adder is that the size of the individual blocks in the VBA
adder can be fine-tuned to minimize the difference in
delays introduced by the carry-paths of the different
length. Sufficiently fast VBA sections are constructed
and combined into a two section Carry Select Adder
[18] as shown in figure 8. In our case, this optimization
is done under the assumption that all of the input bits
to the adder to not arrive at the same time. Obviously,
the adder delay is dependent on the input arrival pro-
file. The FA delays for the signals, arriving all in the
same time (a) and for the input arrival profile resem-
bling that from the Wallace tree (b) are shown in figure
9. We have optimized the Final Adder (GA) for the sig-
nal arrival profile originating from the Wallace tree.

Since the least significant bits are provided very
soon, we can even use ripple adders without time pen-
alty. In this case low-order VBA section provides suf-
ficient speed. The results from the high-order section
are needed as soon as the slowest bit (14) arrives. There-
fore we use select on this portion of the FA. The bits
after bit 14 arrive sooner than the 14-th bit. From that
point on we need to use the fastest available scheme
for addition. Therefore, we combined VBA addition in
a 13-bit section with Carry Select Addition over the re-
maining 12 + 1 bit section. (The most significant por-
tion of the adder is duplicated assuming the carry in
signal equals either O or 1.) Carry out of the least sig-
nificant section controls selection of the proper sum.
The increase in size due to the duplicated part is not
large because of the use of the VBA scheme. Determin-
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Fig. 9. Final adder delay for different signal arrival profiles to FA
inputs.

ation as how to divide the two sections of the adder
is based on the following:

(a) first, we must obtain the delay profile resulting from
the worst case delay of the multiplier. This is not
necessarily the input combination which produces
the worst case delay from the tree. We can observe
this from figure 10, showing delay from the multi-
plier tree and final adder for the two patterns A
and B. The input pattern B results in faster signal
arrival profile from the multiplier tree, yet the delay
after the FA is worse than the pattern A for which
the signals from the multiplier tree arrive later.

(b) second, we divide the FA into two sections in such
a way that the signals from the higher-order section
are already in the same time the carry out of the

n
o

bit 17 (17.3nS) ‘Kbit 22 (18.4n8)

pattern A

pattern B

Delay [nS]

———  Tree-P1[nS]

From FA [P1]
Tree-P2 [nS]
From FA [P2]

[ T T T T
0 10 20

Bit Position 30
Fig. 10. Delay profile from the MWT and FA for two different input
patterns A and B.

low-order section arrives. This will produce flat
output profile for the signals carrying the result.
If they arrive after the carry signal from the least
significant section, that means that the low-order
portion is too small, which in turn increases the
complexity of the FA. The right dividing point is
the point at which those signals arrive at the same
time (not before and not after).

As shown in [20] for short operand sizes, simple
carry propagation schemes are the most efficient in
terms of speed and size, and the use of more complex
addition schemes is not warranted.

The critical path of the adder, i.e., the carry signal,
is implemented as a string of multiplexers. This is
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because they are implemented from the pass transistors
in the CMOS library, making the multiplexer even faster
than a simple gate of the standard cell library [20]. A
section of VBA adder is shown in figure 11.

The associated signal delay profile from the MWT
and from the FA are shown in figure 10. The worst case
delay of such an adder is 6.5 nS (6.3 nS for the adder
adjusted for the MWT). Given that the portion of the
signal propagation is already absorbed in the MWT
(RWT) delay, the FA in our design introduces an addi-
tional 6.3 nS to the multiplication time. This represents
one third of the total multiplication time. Our total
multiplication time is 18.4 nS.

The advantage of using 4:2 instead of 3:2 counters
is self evident.

5. Improvements

Should the word-length in signal processors increase,
further advantage could be taken by using counters of
higher order [22]. An increase in the operand size
should not result in a much slower circuit. Moreover,
in this case, it is easier to find a better tree with more
bits, simply because there are more possibilities. Also,
in the last significant section of the final adder, different
adders could be used, including Carry Look Ahead
adder optimized for the signal arrival time [21]. The
Carry-Select adder seems to be the best choice for the
most significant section of the final adder. The appro-
priate step would be to design a complex multiplier tree,
compare different adders for the trees and improve the
Final Adder for longer operands. The 4:2 counter can
be improved using the fact that no gate is symmetric
in terms of delays of their inputs with respect to the
output. This property applies even in the case of the

XOR gate. There is also a possibility of improving the
design of the tree in that way, but this would be partly
at the expense of gain achieved by the asymmetric
counter.

6. Conclusion

The structure of the complex multiplier presented in
this article takes advantage of using one common
Wallace tree to perform summation of the partial prod-
ucts and performing one add (subtract) operation result-
ing in the real and imaginary part of the complex num-
ber product. Considering that normalization and round-
ing are slow operations, we gained a great advantage
by requiring only one rounding and normalization in-
stead of two. In designing the Wallace tree we achieved
a careful balance by using 4:2 instead of 3:2 counters.

The circuit has been designed using a 1.0 u CMOS
process and contains 10758 gates in LSI 100K technol-
ogy. This technology was available to us and implemen-
tation using a current ASIC family would yield much
better results. However, the basic findings and obser-
vations will still remain. We compared the results of
our design with an ASIC implementation of a 16-bit
multiplier-accumulator implemented in the LSI 10K
ASIC technology [17]. Although we are not comparing
the same design (complex number multiplier) and the
size of the mantissas differ (13 vs. 16 bit), the differ-
ences can be estimated. The best implementation of the
reported 1616 integer multiplier-accumulator yields
a result in 19.7 nS [17]. Our multiplier multiplies two
complex numbers with 13-bit mantissas and yields a
complex multiplication result in 20.8 nS in the same
LSI 10K ASIC technology. Given that our Wallace tree
is more complex, summing the partial products of two



13 X13-bit product terms instead of one those numbers
are comparable. The advantage of our approach is due
to the use of a better and optimized Wallace tree (using
4:2 adders) and also in optimization which is done
across the Wallace tree and Final Adder (tuning the
adder to the Wallace tree). We have not optimized the
paths by powering the critical paths via buffering as it
was done in [17]. However, powering the critical paths
would give us an additional advantage in speed. Finally,
we feel that we have not only demonstrated a concept
but have provided a useful macro-cell component which
is a core cell in the implementation of many Digital
Signal Processing algorithms and applications.
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