A HIERARCHICAL AND MODULAR CIRCUIT
IMPLEMENTING LEADING ZERO DETECTOR FOR A HIGH
PERFORMANCE FLOATING-POINT PROCESSOR

Vojin G. Oklobdzija

Department of Electrical and Computer Engineering
University of California
Davis, CA 95616
vojin@ece.ucdavis.edu

Abstract

A novel circuit implementing a Leading Zero Detection (LZD) function is presented. The
circuit is implemented by imposing a hierarchical and modular topology resulting in a very
fast and efficient circuit in terms of the layout area. The circuit structure is derived from an
algorithmic derivation of the LZD function. The basic blocks are designedto take advantage
of the fastest cell for the particular technology; CMOS and ECL and are modular and
scalable. The resulting circuit demonstrates a substantial advantage over the one obtained
using logic synthesis.

1. Introduction

In any floating-point processor normalization is an operation that is performed either before the
operands are brought to the arithmetic unit or after the computation (post-normalization) and it
is not possible to perform it in parallel with the arithmetic operation. Therefore the time needed
to detect the number of leading zero positions and execute appropriate shift is added to the
critical path. The amount of the shift is determined by counting the number of zero digits from
the left-most position until the first non-zero digit is reached. Afterwards the exponents are
appropriately decremented by the shift amount. Often, the critical path includes leading zero
detection, a pass through the shifter, and an adder. Those three time components all contribute
to the critical path, hence it is essential to design those circuits to be as fast as possible.

Design of the Leading Zero Detector for a large number of input bits (sizes of 54 or 64 bits are
quite common) is rather complicated. This is because each of the 6 result bits are dependent on
all of the input bits, which in the case of a 64-bit word consists of 64 inputs. To design a
circuit with such large and irregular fan-in dependencies is a problem, and it is to be expected
that the resulting circuit will be complicated and slow. On the other hand the circuit can be
designed with the use of Logic Synthesis tools because the VHDL description of this circuit is
on the contrary, concise and clear. However, the circuit resulting from the use of logic
synthesis is not expected to be the most efficient and fastest design possible simply because the
logic synthesis tools have not achieved the required level of sophistication [2].

2. Design Approach

In an attempt to find an efficient circuit implementation, two principles were applied:

- 0 first, find structure in the circuit o make the design modular and hierarchical.
This helps to keep the circuit fan-in and fan-out relatively small and the wiring
of the circuit regular.

0 second, implement the basic building block of the circuit using the fastest
component of the given circuit technology.

The first principle was achieved by the following design proceedure:

2.1 Design Procedure:

1. The LZD circuit for a relatively small number of input bits LZDi (where i = 2 or 4),
was designed first. This is a simple and straight forward process. Afterwards, a larger
LZD was built from the smaller blocks in a recurrent way, using the second type of
blocks LZDp, in a recurrent fashion, where m designates the number of LZD! blocks
acting as inputs to the LZDp block. A LZD circuit is therefore built in a logm(N) levels
(where N is the number of input bits). The first row consists of the LZDi type circuits
followed by logm(N) - 1 blocks of the LZDyy, type. Therefore the speed of the resulting
LZD circuit is expected to be proportional to log(N) as a function of the number of
input bits.

2. The LZDp block was built by favoring the use of multiplexers given that a
multiplexer can be built as a very fast circuit (both in ECL as well as CMOS)
technology. A multiplexer circuit can be built (in CMOS) to be faster than a regular two
input gate (Fig.1). In ECL, the basic circuit structure accomodates building
multiplexers, since current steering (mulitplexing) is the principle upon which a
function is realized in ECL .

The modularity and the algorithm for design of the LZD can be derived from the Truth Table
for an 8-bit LZD.

We observe that the valid bit V for the 8-bit LZD (indicating that there is a "valid" LZ string in
this block) is simply formed by an OR function of VO and V1.

The "position” bits P (indicating the position of the first non-zero bit) are formed (observing
the table) by concatenating the complement of VO (valid bit of the "left" nibble) with the postion
bits (PO or P1) of the "valid" nibble as:

ifVO=1 than: P =-V0/| PO
else:
P=-V0/ Pl

end;

This process defines the structure of the LZDy, which consists of an OR gate and an m-bit

multiplexer. Both can be implemented as fast circuits. To form a larger size LZD, this process
1s repeated by cascading the LZDpy, in a tree like structure.

3. Implementation

The structure of LZD? (used in our CMOS implementation) is shown in Fig. 2. A larger size
multiplexer can be implemented in ECL technology, therefore m=4 is the right choice in the
case of ECL. However, implementation of LZD4 is somewhat more elaborate, nevertheless it
follows from the design procedure described in 2.1 and preservs the principles outlined at the
begining of the Section 2. Position bit m-1 is a logical NOR function of Vm-1+Vm-2, Pm-2 is
obtained by multiplexing Vm-1 and Vm-3 in a multiplexer controlled by Vm-1 and Vm-2, and
bits Pm-3 to PO are obtained by using a complex multiplexer tree, the implementation of which
is shown in Fig, 3.

The way in which LZD is constructed from LZDi and LZDp, blocks is shown in Fig.4.

4. Results

The performance of the CMOS implementation of this LZD was simulated under nominal (NC)
and worse case conditions (WC) for an implementation in 0.7u Leff, tripple metal CMOS
technology. Fig. 5. shows the speed of this novel LZD for different sizes starting from N=25
to N=128 bits. The layout of this novel circuit (Fig.6) is also regular and compact which is
another atribute contributing to its extraordinary speed. The Algorithmic approach
outperformed logic synthesis consistently ranging from 10% - 36% in terms of the
performance and 13% - 26% in terms of the layout area. The ECL implementation of a 64-bit
LZD using the outlined design procedure resulted in under 200pS simulated delay under
nominal conditions.

5. Conclusion

An Algorithmic approach to designing a Leading Zero Detector is described. This circuit has
been implemented in 0.7y CMOS technology and is compared to the results obtained using
Logic Synthesis. We have clearly demonstrated with this circuit the superiority of the
algorithmic approach. The lessons learned apply not only to this particular design (of a LZD),
but could be taken quite generally as an indication that in the performance of critical, especially
data-path, circuits careful analysis of the problem and clever management of the hierarchy pays
big dividends. Although very useful, synthesis tools are still not capable of managing hierarchy
and making intelligent choices when it comes to design and therefore they should be treated
accordingly. The novel LZD has also shown to be very useful since it is often a part of the
critical path in the floating-point unit and the results obtained are quite remarkable.

Acknowledgment: Contribution of Vincent Chang and careful reading of Ron Maeder are
gratefuly acknowledged.

6. References

(11 J. Vuillemin, L. Guibas, "On Fast Binary Addition in MOS Technology", Proceedings of ICCC'82, New
York, September 28, 1982.

[2] V.G.Oklobdzija,"An Algorithmic and Novel Design of a Leading Zero Detector Circuit”, Submitted to IEEE
Transactions on VLSI Systems, 1993,

Figures and Tables

i i

Sel

CMOS
veco
. !
N %m
o « t
o o)
o o
N ouT
A -B 5
L —ouT
”—
sAa —-SA
9 ¢ ¢
VEE VEE VEE
ECL

Fig. 1. Multiplexer Circuits

Table 1. Truth Table for an 8-bit LZD

8-bit LZD "left" nibble { "right"nibble

bit pattern P \4 PO Vo Pl V1

1xxx xxxx | 000 fyes 100 yes

Olxx xxxx 1001 lvyes 01 yes

001x xxxx J010 {yes 10 yes

0001 xxxx | 011 |yes 11 yes

0000 Ixxx | 100 | yes no 00 yes
0000 Olxx {101 {yves no 01 yes
0000 00ix {110 |yes no 10 yes
0000 0001 111 | yes no 11 yes
0000 0000 |=xxx |no no no

PO
P1
P2
P3
V3
Vi

\'4

VRVAYAPAVAVAY

VEE

ve8

VEE

VEE

Fig 2. ECL implementation of a complex multiplexer tree as a part of LZDpy

By-B3 B4-B, Bg-Byy Bya-Bys Big-Big BBy

v ¥ VY Vv Vv v

4bit | LZD*| | LzD*| | LzD*| | LzD* LZD*| | LZDY o o
*P v *P V‘P v *P v *P v +p
N y y
16-bit LZD, l) oo
v v’
64-bit LZD, 0o 0

‘ Position l Valid

Fig. 3 Example of an 64-bit LZD

&

Process Parameters:
Tox=150A, Vit=0.68V, Leff=0.7u, Rm=120mhom/sq

NC= 4.0V, 125 C WC=2.8V, 125 C

Delfay [nS]

4 v 1 ' 1 ! I i 1 i
20 40 60 80 100 120 140

Size (Number of Bits)

Fig.5. Speed of the novel LZD for different sizes for CMOS implementation

Fig. 6. Layout of novel 32-bit LZD implemented in CMOS

