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Abstract

An architecture for ASIC macro-cell implementing a
complex number multiplier with applications in a digital
signal processing ASIC chip is described. The complex
numbers are packed into one 32-bit word. The design is unique
and combines shared Booth encoding for the real and
imaginary parts including only one combined modified
Wallace tree. We compared the regular Wallace tree and the
tree of 4:2 adders for the complex multiplier implementation.
We took advantage of 4:2 adders in implementing the
combined bit compression tree for each part. This design
resulted in a more compact wiring structure and balanced
delays resulting in faster multiplier circuit. The number of
adders was also decreased.

1. Introduction

Flexibility and rapid turn-around design offered by
ASIC technology has made implementation of Digital
Signal Processing (DSP) algorithms in hardware very
viable and popular. Using advanced CAD tools, especially
through the use of VHDL and Logic Synthesis, it became
relatively easy to map a particular DSP algorithm into a
specific hardware. ASIC technology is almost an ideal
platform for implementation of these algorithms in
hardware, since it is relatively easy to modify and recompile
the design, due to the fact that ASIC requires fewer mask
levels than a custom design process. However, to be viable,
it is very important for an ASIC technology to be
supplemented and supported with a comprehensive library
of proven, efficiently designed high-speed macro cells used
in the design process. One of very frequent operations in
DSP algorithms is multiply-add or simply multiplication
of complex numbers. In our specific case, we have
concentrated on the multiplication of complex numbers,
and design of a multiplier for complex numbers in
particular. This specific multiplier is designed to be a
macro-cell in a particular implementation of a VLSI chip
that evaluates the cross-ambiguity function [1,2].

However, the need for specific high-speed floating-
point operations, long numbers and accuracy is present in
many other DSP specific applications. Complex number
operations have been usually performed as a sequence of
common operations.

For example, complex number multiplication of two
complex numbers W = (a+ib) and Z = (c+id) is usually
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done with 4 multipliers (each contains one adder) and 2
final adders (FA) as:

(a +ib)c + id) = (ac - bd) + i(ad + bc)
1)

or it is performed sequentially passing the operands through
the available arithmetic units in the data path (usually one
multiplier and one adder).

To reduce the number of multipliers, it is proposed to
share multiplications by calculating the real and imaginary
parts in the following way:

Re[P]=(a-b)d +alc-d) znq Im{P]=(a-b)d +b(c+d) 2

However, both methods need one adder and require the

resolution of normalization problems after each
multiplication, wasting both time and accuracy.

It is also possible to use CORDIC algorithm for the
computation of the product of the two complex numbers
by properly initializing the sequence of the shift and add
operation with the table-lookup. [3,4,5]. We have not
considered CORDIC for this implementation, though this
algorithm warrants further studies for the DSP computation
due to its specific properties.

In this paper, we describe a new design for a fast
complex number multiplier. By using a specific final adder
optimized for the specific signal arrival time from the
Wallace tree and sharing both, the Booth encoding and
Wallace tree, we can improve size, speed and accuracy. The
architecture of the complex multiplier is described in
Section II. We compare different trees in Section III.
Section IV describes the specific adders. We suggested
some improvements in Section V. Section VI is the
conclusion.

2. Architecture

The specifics of a design of this complex multiplier
require that 32-bit inputs are used with the specific floating
point number representation given in Fig. 1. In order to
efficiently pack a complex number representation into a 32-
bit word, real and imaginary parts share the same exponent.
This is done to efficiently utilize memory and provide
compatibility with the available standard buses and
memory hardware. It is also considered that this format
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implemented one common Wallace tree for bit reduction of
both partial products, as shown in Fig. 2. The final adder is
also critical because of the carry propagation time. Indeed,
the time required for final addition is almost equal to the
third of total multiplication time. A common way to speed
up addition is the well-known Carry-Look-Ahead (CLA)
method. However, as shown in [10], it is possible to
implement a Variable Block Adder (VBA) of the speed
comparable to the CLA and complexity of the Carry Skip
Adder by varying block sizes and optimizing for the
different arrival times of the carry signal in the critical
path. We used this method in order to adjust the final adder
block sizes to the specific signal arrival time profile
originating from the Wallace tree.

3. The Different Trees

Usually Wallace tree is implemented from the full
adders. The trees are not regular and they are difficult wire,
as shown in Fig.4.a. Santoro has shown that the Wallace
trce can be better in terms of wireability by using 4:2
adders (ST), as shown in Fig.4.b [6]. This adder has
actually 5 inputs (4 partial products and a carry input) and 3
outputs (2 carry outputs and the sum).
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Figure 4: Wiring diagram of the Wallace Tree

The interesting feature of this adder is that the carry
output does not depend on the carry input and the two
carries have the same weight. Therefore, there is no carry
propagation from far right to left but inside only two
adders. The 4:2 counter used by Santoro (SC) results in the
longest path equivalent to 4 XOR gate delays. Another
multiplier design from Toshiba Corp. [12] uses a specially
designed 4:2 counter with reduced delay. The 7:3 adder is
similar to the use of full adders, but it is more efficient.
The 9:3 adder is similar to 4:2 adder however, its use is
difficult because it requires more bits for its efficient
utilization. Therefore, we considered only Wallace tree built
from full adders and a tree of 4:2 adders as proposed by
Santoro.

Comparing both trees, we realized that the tree of 4:2
adders has almost one half of the levels (of used counters)
compared to the Regular Wallace Tree (RWT) built from
the full adders. However, in terms of the gate delays each
4:2 counter stage of SC is similar to a delay equivalent to
4 XOR gates. On the other hand, Wallace tree stage built
from the full adders, RWT, is comparable to 2 XOR gate
delays. Therefore, the use of 4:2 counters is considered
almost equivalent to RWT in terms of the delay. The only
recognized advantage of 4:2 counters is in their use
resulting in more regular layout [6]. To take full advantage
of 4:2 counters, we designed a special 4:2 counter cell
called Reduced Delay Counter (RDC) using available ASIC
cells, resulting in only 3 XOR equivalent gate delays.
RDC cell is shown in Fig.5. The resulting RDC 4:2 cell
is only slightly larger (in terms of equivalent gates, 30
versus 20) for the 25% increase in speed of the resulting
Wallace tree. The signal arrival time resulting from such a
Modified Wallace Tree (MWT) shows more even profile
which is the result of the optimization. The signals at the
end bit positions from MWT tree arrive almost at the same
time. The signal arrival profiles for the RWT and MWT are
shown in the Fig.6.
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Figure 5: Logic of the Reduced Delay Counter RDC
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On the cther hand, the final adder can not be tuncd as
well as with RWT and advantage achicved by optimizing
the FA for the specific signal arrival profile is somewhat
diminished. The resuiting multiplier show an overall
advantage in speed over the one using RWT as shown in
I1g.8. We think that {or the longer operands one could
further optimize the FA given that the end effects of the
(ifferent signal arrival times will still exist. The speed
advantage of such modified tree in termis of the delay over
regular Wallace tree will increase with the increase of the
operand fength giving an additional advantage to our
approach.

We also reahzed that the delay of RDC shows
sensitivity o the inputs, ie. that the delay is different for
different mput to output path. This opens an opportunity
{or further speed optimization by sclecting which input to
autput combination to use in a particular MWT realization.
However. this would require cither a sophisticated
placement and wiring tool or "manaal intervention”, and it
was not considered for that reason.

The distrsbution of delays in our rultipher design shows
13.6 aS from Booth enceding to the FA input (17.4 nS
using RWT) as shown :n Fig. 6.

4. The Final Adder

For the final adder, we used Variable Block Adder [ (0]
because this scheme achieves good performance without
using much additional logic. We construct sufficiently fast
VBA scciions which are combined into a two section
Conditioral Sum Adder [11]. The low order bit VBA
scution is tuned for the signal arrival time from bits 0-12
of the MWT while the higher order section is optimized for
signal arrival from bit positions 13-25. The optimized FA
resulted 1 two equal 13-bat sections applied to MWT and
12 and 14 bit sections for the RWT (12-bit section being
the least -igraficant portion of the product). This reduces
the critica! path and pesrts high speed calculation of the
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The signal arri 7al times before entering the FA are shown
in Fig.6. Since the least significant bits arc provided very
snon, we can use ripple adders without time penalty. The
bits after the bit 13 arrive sooner than the 13th bit.
Therefore, we :ombined VBA addition in a 12-bit section
with Conditioral-Sum Addition over the remaining 12+1
bit section. (The most significant portion of the adder is
duplicated asstming carry in signal cquals either 0 or 1.)
Carry out of th: least significant section controls selection
of the proper sum. The size of the duplicated part is not
large due to the use of the VBA scheme. Also, as shown in
[11] for short operand sizes, simple carry propagation
schemes are th: most efficient in terms of speed and size,
and the use o morc complex addition schemes is not
warranted. The Final Adder is shown in Fig.7.
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Figure 7: Final Adder for MWT Multiplier

The associated signal delay profile from the MWT and
from the FA arz shown in Fig.8. The worse case delay of
such adder is £.2nS (8.3nS for the adder adjusted for the
RWT). Given that the portion of the signal propagation is
alrcady absorbcd in the MWT (RWT) delay, the FA in our
design introduces only an additional 5.5 nS to the
multiplication ime. This represents a quarter of the total
multiplication ime. Our total multiplication time is 20.8
ns.
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5. Improvements

In case of the long operands, increase in the operand
size, should not be resulting in much slower circuit.
Moreover, in this case, it is easier to find a better tree with
more bits, simply because there are more possibilities.
Therefore, the appropriate step would be to design a
complex multiplier tree, compare different adders for the
trees and improve the Carry Skip Adder blocks with longer
operands. The 4:2 adders can be improved using the fact
that no gate is symmetric in terms of delays of their inputs
with the respect to the output. This property applies even
in case of the XOR gate.

In the post normalization stage, improvement should
not be difficult given that the last step consists of the
adjustment of the exponent and the shift of the fractions. It
is also possible to use the Conditional Sum Adder for this
operation. We can reduce the size of the final adder by
using only the carry propagation on the right part. Indeed,
we know that the result do not need to be shifted more than
five bits.

6. Results and Conclusion

The circuit has been designed using a 1.5 CMOS
process and contains 10758 gates in LSI 10K technology.
This technology was available to us and implementation
using current ASIC family would yield much better results.
However, the basic findings and observations will still
remain.

We compared the results of our design with an ASIC
implementation of 16-bit multiplier-accumulator
implemented in the same ASIC technology [13]. Although
we are not comparing the same design (complex number
multiplier) and the size of the mantissas differ (13 vs 16
bit), the differences can be estimated. The best
implementation of reported [13] 16X16 integer muliplier-
accumulator yields a result in 19.7 nS. Our multiplier
multiplies two complex numbers with 13-bit mantissas
and yields a complex multiplication result in 20.8 nS in
the same ASIC technology. This is substantially faster,
given that our Wallace tree is more complex, summing the
partial products of two 13X13-bit product terms. The
advantage of our approach is due to the use of better and
optimized Wallace tree (using 4:2 adders) and also in
optimization which is done across the Wallace tree and
Final Adder ("tuning” the adder into the Wallace tree). We
have not optimized the paths by powering the critical paths
"buffering” as it was done in [13]. However, powering the
critical paths would give us an additional advantage in
speed. Finally, we feel that we have not only demonstrated
a concept for designing fast parallel multiplier in ASIC
technology but have provided an useful macro-cell
component which is a core cell in the implementation of
many Digital Signal Processing algorithms and
applications.
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