An ASIC Macro Cell Multiplier for Complex Numbers

Thierry Soulas, David Villeger
Ecole Superieure d'Ingenieurs en Electrotechnique et
Electronique
93162 Noisy le Grand CEDEX, FRANCE
soulas@apo.esiee.fr, villeger@apo.esice.fr
33-1-45-92-65-00

Abstract

An architecture for ASIC macro-cell implementing a
complex number multiplier with applications in a digital
signal processing ASIC chip is described. The complex
numbers are packed into one 32-bit word. The design is unique
and combines shared Booth encoding for the real and
imaginary parts including only one combined modified
Wallace tree. We compared the regular Wallace tree and the
tree of 4:2 adders for the complex multiplier implementation.
We took advantage of 4:2 adders in implementing the
combined bit compression tree for each part. This design
resulted in a more compact wiring structure and balanced
delays resulting in faster multiplier circuit. The number of
adders was also decreased.

1. Introduction

Flexibility and rapid turn-around design offered by
ASIC technology has made implementation of Digital
Signal Processing (DSP) algorithms in hardware very
viable and popular. Using advanced CAD tools, especially
through the use of VHDL and Logic Synthesis, it became
relatively easy to map a particular DSP algorithm into a
specific hardware. ASIC technology is almost an ideal
platform for implementation of these algorithms in
hardware, since it is relatively easy to modify and recompile
the design, due to the fact that ASIC requires fewer mask
levels than a custom design process. However, to be viable,
it is very important for an ASIC technology to be
supplemented and supported with a comprehensive library
of proven, efficiently designed high-speed macro cells used
in the design process. One of very frequent operations in
DSP algorithms is multiply-add or simply multiplication
of complex numbers. In our specific case, we have
concentrated on the multiplication of complex numbers,
and design of a multiplier for complex numbers in
particular. This specific multiplier is designed to be a
macro-cell in a particular implementation of a VLSI chip
that evaluates the cross-ambiguity function [1,2].

However, the need for specific high-speed floating-
point operations, long numbers and accuracy is present in
many other DSP specific applications. Complex number
operations have been usually performed as a sequence of
common operations.

For example, complex number multiplication of two
complex numbers W = (a+ib) and Z = (c+id) is usually

1066-1409/93 $03.00 © 1993 IEEE

Vojin G. Oklobdzija
Electrical and Computer Engineering Department
University of California
Davis, CA 95616
vojin@eecs.ucdavis.edu
(916) 752-5634

done with 4 multipliers (each contains one adder) and 2
final adders (FA) as:

(a +ib)c + id) = (ac - bd) + i(ad + bc)
1)

or it is performed sequentially passing the operands through
the available arithmetic units in the data path (usually one
multiplier and one adder).

To reduce the number of multipliers, it is proposed to
share multiplications by calculating the real and imaginary
parts in the following way:

Re[P]=(a-b)d +alc-d) znq Im{P]=(a-b)d +b(c+d) 2

However, both methods need one adder and require the

resolution of normalization problems after each
multiplication, wasting both time and accuracy.

It is also possible to use CORDIC algorithm for the
computation of the product of the two complex numbers
by properly initializing the sequence of the shift and add
operation with the table-lookup. [3,4,5]. We have not
considered CORDIC for this implementation, though this
algorithm warrants further studies for the DSP computation
due to its specific properties.

In this paper, we describe a new design for a fast
complex number multiplier. By using a specific final adder
optimized for the specific signal arrival time from the
Wallace tree and sharing both, the Booth encoding and
Wallace tree, we can improve size, speed and accuracy. The
architecture of the complex multiplier is described in
Section II. We compare different trees in Section III.
Section IV describes the specific adders. We suggested
some improvements in Section V. Section VI is the
conclusion.

2. Architecture

The specifics of a design of this complex multiplier
require that 32-bit inputs are used with the specific floating
point number representation given in Fig. 1. In order to
efficiently pack a complex number representation into a 32-
bit word, real and imaginary parts share the same exponent.
This is done to efficiently utilize memory and provide
compatibility with the available standard buses and
memory hardware. It is also considered that this format

nrovides v ample range and sutficient precision for mos!
DSP real urae applications. By using this represeniatior
and the JERE standard normalization, we ehminated the
necd o normalize alter each multiplication, Becausc
aormaliz.ticn and routinyg are slow processes, our approact

advanagsous because 14 uses only one routing and
aormalizition after the tinal adder.

“EitExpo ent |Si| 12 Bit Real Part

[s] 12 Bit Imaginary Part E

2 625 24 112 C

Figure | iepresentation format

The kevout and wircability of the complex number
noultphic: were one of our main concerns. This is becausc
alotof te Thidden cost nterins of the multiphier delay is
containe ! an these arcas A study done by Santoro has
provided v-eful guideluies for the case of the CMOS
teehnolosy 16,7]. His fndings can be summarized that ir
trms of the size the layout arca of the multiplier is
reughly Sitvided into four quariers: Beoth encoding logic
Wallace tree. Final Adder und Wires.

in ¢ approach, we have used @ straightforwir

ultiply- add operatior s outlined in (1.2] and savings ir
th¢ number of compenents are achieved by sharing the
common droduct terms and therelore the Booth encoders for
e operands a and b, In addition, we combined the Wallace
voes for -he two partiai products ac and bd, and be and ad
rospectiy oIy By the micasures provided by Santoro, our
Jemrgnoresutred oo greator than 10% reduction in terms of
e size aad more regulac fayout ol the multiplicr.

The maluplication process of the two compicex
pambers s performed in a standard procedure for the
ultiplicat:on of the Tloating pomt numbers. The
svponenss and mantisses are separated and the exponen:
pnts are added together, The real and imaginary part
manussas are muliplicd snaring Booth encoders and using
a commen Wallace tree We chose 1o use Booth encoding

the asultiplier because this allow as 10 share the
coramon wrms. Fially, the reducad parual products from
that Walace tree are added in the fast Final Adder (FA)
iy add v s designed v take advaniage of the speaitic
oehle o the signal arsival umes tat are onginating from
U Wallico trees The vwan structare of the multiplicor i
Jwwn e g, 2
Wal we trees e 1

FHor the ditvampression of both
il poducts, thus avocling the use af separate adders a
stown o Feg 3 The strusture of the Wallace wree w10
rooufar ond the sgnal wmive 10 FA o different timer
dependiry en the bit pesition, T has been known that e
fors closor to the ends ol the Wallace tree will arnive
soener. T oar design the Tinal adcer i specitic o the data
asirval,

The peed of the encoder does notdepend on the size o
v eperends, but only e different fan-outs, Hewever, i
speed of the Wallace tee s ontical and depends on the
amber of devels which s reloted o the size of the
coerands [nooar spec fe case, we hed two solutions o

{

==

adding the partial products.

/\l IB
C [Booin Booth D
l Encod. Encod. '
1 —y
Selact AC .’—l Selact 8C~|

| Select BD [« ;E»elecl AD

-BD ' AC BC ' W

Wallace Wallace
Tree Tree
BC+AD BC+AD

; Final Ac Jer ; : Final Adder ;
T

Real Part y v-

Normalization
and Rouding

; Result

Fegure 2: Mulitplier Organization

Imaginary Part

The most direct solution would be to implement
wWallace trees separately for partial products and add the
results separat2ly as shown in Fig.3a. The better solution
15 however, o use separate Wallace trees, as shown in
Fig.3b, thus : voiding large increase in the number of
levels.
Fartia! producls Partia! products

Partial producis Fartial producis

AC 0 AC 8D
Wallace Wailace Wallace Wallace
Tree Tree Tree Tree
1
T 7 ¥ [
[ager | [Ai‘;er | Wallace
%) Tree lew levls

Fira Adoer [!jr:i(Adder

Ree: Part Real Part

{a} Usual Wallac : rrea crgan-zatian (t.) Faster Wallace tree organizaton

Fi

gowre 3 Structure of the Wallace trees

As showr by Dadda, the ability 10 reduce the number
af levels is deermineid by the type of the general cournter
chosen [8,9]. 3ccause our operands are only 13 bits long,
the second sclution 15 not advantageous. Therefore, we

implemented one common Wallace tree for bit reduction of
both partial products, as shown in Fig. 2. The final adder is
also critical because of the carry propagation time. Indeed,
the time required for final addition is almost equal to the
third of total multiplication time. A common way to speed
up addition is the well-known Carry-Look-Ahead (CLA)
method. However, as shown in [10], it is possible to
implement a Variable Block Adder (VBA) of the speed
comparable to the CLA and complexity of the Carry Skip
Adder by varying block sizes and optimizing for the
different arrival times of the carry signal in the critical
path. We used this method in order to adjust the final adder
block sizes to the specific signal arrival time profile
originating from the Wallace tree.

3. The Different Trees

Usually Wallace tree is implemented from the full
adders. The trees are not regular and they are difficult wire,
as shown in Fig.4.a. Santoro has shown that the Wallace
trce can be better in terms of wireability by using 4:2
adders (ST), as shown in Fig.4.b [6]. This adder has
actually 5 inputs (4 partial products and a carry input) and 3
outputs (2 carry outputs and the sum).

TR

v

| |
‘—l

J

(b.) MWT
Figure 4: Wiring diagram of the Wallace Tree

The interesting feature of this adder is that the carry
output does not depend on the carry input and the two
carries have the same weight. Therefore, there is no carry
propagation from far right to left but inside only two
adders. The 4:2 counter used by Santoro (SC) results in the
longest path equivalent to 4 XOR gate delays. Another
multiplier design from Toshiba Corp. [12] uses a specially
designed 4:2 counter with reduced delay. The 7:3 adder is
similar to the use of full adders, but it is more efficient.
The 9:3 adder is similar to 4:2 adder however, its use is
difficult because it requires more bits for its efficient
utilization. Therefore, we considered only Wallace tree built
from full adders and a tree of 4:2 adders as proposed by
Santoro.

Comparing both trees, we realized that the tree of 4:2
adders has almost one half of the levels (of used counters)
compared to the Regular Wallace Tree (RWT) built from
the full adders. However, in terms of the gate delays each
4:2 counter stage of SC is similar to a delay equivalent to
4 XOR gates. On the other hand, Wallace tree stage built
from the full adders, RWT, is comparable to 2 XOR gate
delays. Therefore, the use of 4:2 counters is considered
almost equivalent to RWT in terms of the delay. The only
recognized advantage of 4:2 counters is in their use
resulting in more regular layout [6]. To take full advantage
of 4:2 counters, we designed a special 4:2 counter cell
called Reduced Delay Counter (RDC) using available ASIC
cells, resulting in only 3 XOR equivalent gate delays.
RDC cell is shown in Fig.5. The resulting RDC 4:2 cell
is only slightly larger (in terms of equivalent gates, 30
versus 20) for the 25% increase in speed of the resulting
Wallace tree. The signal arrival time resulting from such a
Modified Wallace Tree (MWT) shows more even profile
which is the result of the optimization. The signals at the
end bit positions from MWT tree arrive almost at the same
time. The signal arrival profiles for the RWT and MWT are
shown in the Fig.6.

.
- Dv—lp s
T4 . =

:

12
=

"—‘j pz
 |ND2 B
<

Mux21LP

A z z p———~a
L=)mdot—r»

couT

Figure 5: Logic of the Reduced Delay Counter RDC

591

On the cther hand, the final adder can not be tuncd as
well as with RWT and advantage achicved by optimizing
the FA for the specific signal arrival profile is somewhat
diminished. The resuiting multiplier show an overall
advantage in speed over the one using RWT as shown in
I1g.8. We think that {or the longer operands one could
further optimize the FA given that the end effects of the
(ifferent signal arrival times will still exist. The speed
advantage of such modified tree in termis of the delay over
regular Wallace tree will increase with the increase of the
operand fength giving an additional advantage to our
approach.

We also reahzed that the delay of RDC shows
sensitivity o the inputs, ie. that the delay is different for
different mput to output path. This opens an opportunity
{or further speed optimization by sclecting which input to
autput combination to use in a particular MWT realization.
However. this would require cither a sophisticated
placement and wiring tool or "manaal intervention”, and it
was not considered for that reason.

The distrsbution of delays in our rultipher design shows
13.6 aS from Booth enceding to the FA input (17.4 nS
using RWT) as shown :n Fig. 6.

4. The Final Adder

For the final adder, we used Variable Block Adder [(0]
because this scheme achieves good performance without
using much additional logic. We construct sufficiently fast
VBA scciions which are combined into a two section
Conditioral Sum Adder [11]. The low order bit VBA
scution is tuned for the signal arrival time from bits 0-12
of the MWT while the higher order section is optimized for
signal arrival from bit positions 13-25. The optimized FA
resulted 1 two equal 13-bat sections applied to MWT and
12 and 14 bit sections for the RWT (12-bit section being
the least -igraficant portion of the product). This reduces
the critica! path and pesrts high speed calculation of the

s

Comparison of RW T 40 MWT Signat Arosal Profues
) W AT
- [IEY0ad
& i ;
B .
: .
)
o 4 . B
’ 1
. H
1 . i K
i ‘ I B
| . 1
g ‘A
‘ ‘ A
: : b
i ; H K
! ‘ HE
i . KK X
o) / 4 L A
D A O WD - NO YN O D DO — N ¥ 0D
,,,,,,,,,, BRI
Bis
Figuoe oo Sigrid Aoy vii Pregide for 2! W and MW

The signal arri 7al times before entering the FA are shown
in Fig.6. Since the least significant bits arc provided very
snon, we can use ripple adders without time penalty. The
bits after the bit 13 arrive sooner than the 13th bit.
Therefore, we :ombined VBA addition in a 12-bit section
with Conditioral-Sum Addition over the remaining 12+1
bit section. (The most significant portion of the adder is
duplicated asstming carry in signal cquals either 0 or 1.)
Carry out of th: least significant section controls selection
of the proper sum. The size of the duplicated part is not
large due to the use of the VBA scheme. Also, as shown in
[11] for short operand sizes, simple carry propagation
schemes are th: most efficient in terms of speed and size,
and the use o morc complex addition schemes is not
warranted. The Final Adder is shown in Fig.7.
Final Adder
¥ ous 1310 29 ' bits 010 12

‘l :|| s I-Cm. jl 3]_E H |1|

cn=1
CHeH = s H

13 bits muttig lexer

bits 17 t0 25 bits Oto 12

Figure 7: Final Adder for MWT Multiplier

The associated signal delay profile from the MWT and
from the FA arz shown in Fig.8. The worse case delay of
such adder is £.2nS (8.3nS for the adder adjusted for the
RWT). Given that the portion of the signal propagation is
alrcady absorbcd in the MWT (RWT) delay, the FA in our
design introduces only an additional 5.5 nS to the
multiplication ime. This represents a quarter of the total
multiplication ime. Our total multiplication time is 20.8
ns.

Signal Arrival Profile rrom the MWNT and FA

W oa2Tee
Bl Accer

Tree deiays (nS)

5. Improvements

In case of the long operands, increase in the operand
size, should not be resulting in much slower circuit.
Moreover, in this case, it is easier to find a better tree with
more bits, simply because there are more possibilities.
Therefore, the appropriate step would be to design a
complex multiplier tree, compare different adders for the
trees and improve the Carry Skip Adder blocks with longer
operands. The 4:2 adders can be improved using the fact
that no gate is symmetric in terms of delays of their inputs
with the respect to the output. This property applies even
in case of the XOR gate.

In the post normalization stage, improvement should
not be difficult given that the last step consists of the
adjustment of the exponent and the shift of the fractions. It
is also possible to use the Conditional Sum Adder for this
operation. We can reduce the size of the final adder by
using only the carry propagation on the right part. Indeed,
we know that the result do not need to be shifted more than
five bits.

6. Results and Conclusion

The circuit has been designed using a 1.5 CMOS
process and contains 10758 gates in LSI 10K technology.
This technology was available to us and implementation
using current ASIC family would yield much better results.
However, the basic findings and observations will still
remain.

We compared the results of our design with an ASIC
implementation of 16-bit multiplier-accumulator
implemented in the same ASIC technology [13]. Although
we are not comparing the same design (complex number
multiplier) and the size of the mantissas differ (13 vs 16
bit), the differences can be estimated. The best
implementation of reported [13] 16X16 integer muliplier-
accumulator yields a result in 19.7 nS. Our multiplier
multiplies two complex numbers with 13-bit mantissas
and yields a complex multiplication result in 20.8 nS in
the same ASIC technology. This is substantially faster,
given that our Wallace tree is more complex, summing the
partial products of two 13X13-bit product terms. The
advantage of our approach is due to the use of better and
optimized Wallace tree (using 4:2 adders) and also in
optimization which is done across the Wallace tree and
Final Adder ("tuning” the adder into the Wallace tree). We
have not optimized the paths by powering the critical paths
"buffering” as it was done in [13]. However, powering the
critical paths would give us an additional advantage in
speed. Finally, we feel that we have not only demonstrated
a concept for designing fast parallel multiplier in ASIC
technology but have provided an useful macro-cell
component which is a core cell in the implementation of
many Digital Signal Processing algorithms and
applications.

References

(1]

(2]

(3]

[4]

(5]

(6]

{71

[8)

9]

[10]

[11]

(12]

[13]

593

N. M. Marinovich, V. G. Oklobdzija, , "VLSI Chip
Architecture for Real Time Ambiguity Function
Computation ", 25th Asilomar Conference on Signals,
Systems and Computers, November 4-6, Pacific Grove,
1991.

N. M. Marinovich, V. G. Oklobdzija, , "A VLSI
Architecture for Real-Time Computation of The Cross-
Ambiguity Surface ", submitted for publication to IEEE
Transactions on Signal Processing, April 1992.

J.E.Volder, "The CORDIC trigonometric computing
technique " IEEE Transactions on Electronic
Computers, Vol EC-8, p. 330, September 1959.

J.S.Walther, "A Unified Algorithm for Elementary
Funmctions ", SICC, p. 379, April 1971.

H. Yoshimura et al, "A 50 MHz CMOS Geometrical
Mapping Processor ", IEEE Transaction on Circuits and
Systems, p. 1360, October 1989,

Mark R. Santorio, "Design and Clocking of VLSI
Multipliers", Technical Report No. CSL-TR-89-397,
Stanford University, October 1989.

Mark R. Santoro, Mark A. Horowitz, "SPIM: A Pipelined
64X64-bit Iterative Multiplier”, IEEE Journal of Solid
State Circuits, Vol. 24, No. 2, April 1989.

W. J. Stenzel, W J. Kubitz, "A Compact High-Speed
Parallel Multiplication Scheme”, IEEE Transaction on
Computers, Vol. C-26, No. 10, October 1977.

Luigi Dadda, "Some Schemes for Parallel Multipliers”,
Alta Frequenza, Vol. 34, No. 5, March 1965.

V. G. Oklobdzija, E. R. Barnes, "Some Optimal Schemes
for ALU Implementation in VLSI Technology", 7th
Symposium on Computer Arithmetic ARITH-7, June 4-6,
1985, Urbana, Illinois.

V. G. Oklobdzija, E. R. Barnes, "On Implementing
Addition in VLSI Technology", IEEE Journal of Parallel
Processing and Distributed Computing, No.5, p. 716
1988.

J. Mori et al, "A 10nS 54X54-b Parallel Structured Full
Array Multiplier with 0.5-u CMOS Technology”, IEEE
Journal of Solid State Circuits, Vol. 26, No. 4, April
1991.

K.F.Pang et al, “Generation of High Speed CMOS
Multiplier -Accumulators”, Proceedings of the Int'l
Conference on Computer Design, Rye, New York,
October 1988.

