6 ZELDOVICH, B. YA., PILIPETSKIL, N. F., and SHKUNOV, V. V.: ‘Principles
of phase conjugation’ (Springer Optical Sciences, Springer-Verlag,
Berlin, 1985), Vol. 42

7 HOOK, A., and BOLLE, A.: “Transient dynamlcs of sumulat.ed Bril-
louin scattering in optical systems’, J. Li
Technol., 1992, LT-10, pp. 493-502

ALGORITHMIC DESIGN OF A
HIERARCHICAL AND MODULATOR
LEADING ZERO DETECTOR CIRCUIT

V. G. Oklobdzija

Indexing terms: Digital arithmetic, Microprocessors

A novel way of implementing the leading zero detector
(LZD) circuit is described. The implementation is based on
an algorithmic approach Iting in a modular and scalabl
circuit for any number of bits. This approach to LZD design
yields both speed and area advantages over logic synthesis.

Introduction: In any floating-point processor, normalisation is
a common operation. It consists of an appropriate left shift
until the first nonzero digit is in the left-most position. The
amount of shift is determined by counting the number of zero
digits from the left-most position until the first nonzero digit is
reached. The exponents are appropriately decremented for the
shift amount. The special circuit to detect the number of
leading zeros is referred to as the leading zero detector (LZD).
Implementation of the LZD circuit is rather complicated. This
is because each bit of the result is dependent on all of the
input bits, which in the case of a 64 bit word, consists of 64
inputs. It is obvious that such large fan-in dependences are a
problem and that the resulting circuit is likely to be compli-
cated and slow. Designing such a circuit using Boolean mini-
misation or Karnaugh maps is cumbersome and slow. On the
other hand, this circuit is a very good candidate for logic
synthesis (LS) because its VHDL description is concise and
clear. However, LS tools have not yet reached a level of soph-
istication at which they can deal with hierarchical structures
and create hierarchy in the design. Rather their approach is to
expand the logic in one level and optimise it via elaborate and
laborious logic minimisation using hours of the CPU time.
Therefore the design presented in this Letter results not only
in an efficient and fast LZD but also provides an estimate and
understanding as to what the logic synthesis tools can and
cannot do.

Design procedure: In this approach the inherent hierarchy
associated with.the leading zero detection process is used and
it is translated into a hierarchical and modular design. To
understand this design process, let us begin by examining only
the first two bits, as shown in Table 1.

1t is very straightforward to construct the logic for the two
bits representing valid bit ¥ and position bit P as shown in
Table 1. The logic for the two bits is trivial.

Extension of the 2 bit case into the 4 bit case is shown in
Table 2. We designate the position bits (of four bits total) as
P, for the left-most two bits and P, for the right-most two
bits. Also we will designate ¥, and V, as the valid bits for the
first two and second two bits, respectively, moving from left to
right. The LZ position can be represented as a function of
those four bits as shown in the fifth column of Table 2 (the
minus sign represents the complement). The 4 bit circuit has
two logic levels, and in the second level a valid bit is formed as

Table 1 TRUTH TABLE FOR

TWO BITS
Pattern Position Valid
1X 0 Yes
01 1 Yes
00 X No

ELECTRONICS LETTERS 4th February 1993 Vol.29 No.3

the logical OR of the valid bits from the previous level. In
other words, if there is a ‘valid’ string of bits within the group
in the previous level then this group has a valid position bit. If
all of the groups, however, do not show a ‘valid’ output, that
simply means that they are all a string of zeros and that the
first nonzero bit can be expected only within one of the
groups to the ‘right’. The left valid bit ¥; is inverted and
concatenated with the P, if ¥; = 1, or with P, if ¥; = 0 and
V, = 1. This is achieved by simply multiplexing P, and P, to
the output of the multiplexer. This structure is shown in Fig.
1. However, a 4 bit LZD can be implemented in one level of
logic, simply from Table 2. However, this exercise was carried
out for tutorial purposes, to illustrate the concept. Naturally,
the implementation depends on the technology used; even
more bits can be compressed into one level, or one logic tree.

P, P,

<
<

1

qr—<

\SEL

/’I o

P v
o0 /1

Fig. 1 Structure of group

We can take two groups of four bits and form an LZD for
an 8 bit word, simply following the same concept as for the
example of four bits. From Tables 1 and 2 we can deduce the
hierarchical structure for the LZD and arrive at the following
algorithm for generating the number of leading zeros:

Table 2 TRUTH TABLE FOR 4 bit LZD

Position
Pattern Position (binary) Valid Position
1011 0 00 Yes —-Vi/P,y
0100 1 01 Yes —-Vi/Py
0011 2 10 Yes —-V/P,
0001 3 11 Yes —W/P,
0000 4 XX No XX

Algorithm for generating LZ count :

(1) form the pair of bits B, B;,, for i = 0 to N — 2 with bit 0
being the leftmost one

(2) determine P and V bits for each pair

(3) for the next level determine the P, and V, bits as a function
of two pairs of inputs P and V in th|s level in the following
way:

V, =V, + V, where + is the logical OR operation

if ¥, = 1 then P, = O/P, ('/’ is concatenation)
else if V, = 1 then P, = 1/P,

otherwise V, =0

repeat step 3 log (N) — 2 times

The logical depth of this circuit is log,(N) stages where the
pass through each stage is of the complexity of the multiplexer
or equivalent to one level of logic. In many CMOS circuits the
multiplexer is actually implemented using a pass-transistor
structure and therefore is even faster than a regular CMOS
gate. This is the reason for the extraordinary speed of this
scheme for the LZD. In CMOS any further compression of
the number of levels would pass the point of diminishing
returns as far as speed is concerned. Using the same concept
on groups of four bits instead of two bits, in ECL technology,

283



this concept shows an additional advantage. In this case the
speed of this LZD implementation is of depth log,(N) stages
and is even faster.

Fig. 2 Layout of 32 bit LZD for the algorithmic design

Implementation and performance: The regularity of the novel
LZD design can also be used to produce a more efficient
layout. By creating each cell as a basic building block for each
stage the entire circuit can be routed primarily in metal lines
flowing in the direction of the data path. This results in better
performance and facilitates the inclusion of an LZD in the
regular data path of the floating-point or any other unit that
needs an LZD circuit. The layout of the 32 bit LZD is shown
in Fig. 2 for the algorithmic design. The algorithmic layout
has four rows of celis which were placed using the Timberwolf
package resulting in an area of 163 x 340 um2. The results
obtained using LS has a 35% larger area, 186 x 403 um?. In
terms of speed, the algorithmic LZD introduces a delay of
T, = 4:5nS for the typical case in 0-6 um CMOS technology.
The LZD resulting from the logic synthesis has a delay T;, =
5-8ns (both for the typical case) which is 29% slower. There-
fore, we can say that the algorithmically designed LZD is
roughly 1/3 smaller and faster than the equivalent LZD
resulting from the LS. The performance of the novel LZD is
shown for the nominal and worse case conditions, NC and
WG, respectively, in Fig. 3.

12
104
w
C‘
T 84
k4 -
a
w
6 //
4
20 40 60 80 100 120 140
size, bit
Fig. 3 Speed of novel LZD against size
—m— WC(nS)
—&— NC(nS)

Conclusion: This circuit has been implemented in 0-6 um
CMOS technology and compared to the results obtained
using logic synthesis under various conditions and for differ-
ent layout approaches. The algorithmic approach out-
performed LS consistently ranging from 12 to 56% in terms of
the performance and 14-5 to 35% in terms of the layout area.
We have clearly demonstrated with this circuit the superiority
of the algorithmic approach.

Acknowledgment : T thank V. Chang for running the simula-
tion and the Timberwolf program. The idea was conceived in

284

June 1987 while the author was on the TF-1 project at IBM
T. J. Watson Research Center in New York. I am grateful to
M. Denneau of IBM for his ideas and discussion during the
project.

16th November 1992

V. G. Oklobdzija (Department of Electrical and Computer Engineering,
University of California, Davis, CA 95616, USA)

PHOTONIC 2 x 2 PACKET SWITCH WITH
INPUT BUFFERS

J. Spring and R. S. Tucker

Indexing terms: Optical

itching, Optical

A self-routing 2 x 2 photonic packet switch with two fibre-
loop input buffers that provide output contention resolution
is demonstrated. The switch uses high-speed electronic
control that prioritises all switching and buffer i
and guarantees packet integrity while maximising through-
put.

Introduction: Packet switching is established as a telecommu-
nications standard. Self-routing photonic packet switches will
be important components for future all-optical networks.
There have been a number of recent demonstrations of self-
routing photonic packet switches [1, 2]. These demonstrations
have highlighted the fact that the information content
(payload) of a packet is not limited by electronics in an opti-
cally transparent switch [1].

A major limitation of previously reported photonic packet
switches is that they are unable to resolve output contention
events that occur when input packets are simultaneously tar-
geted for the same output. Eiselt et al. [3] demonstrated
output contention resolution using a fibre loop at one input of
a 2 x 2 packet switch. However, when a packet is stored in
the fibre loop the associated input cannot receive new packets.
The Eiselt experiments could only handle synchronous packet
arrivals. Photonic switches will, in general, have asynchronous
packet arrivals, and for this reason it is critical that the
switching node be able to switch input packets and resolve
output contention regardless of the arrival time of the packets
and regardless of previous packet flow through the switch.
This Letter demonstrates a new 2 x 2 photonic packet switch
with two fibre-loop input buffers (memories) that enable
output contention to be resolved. The new 2 x 2 switch
handles fully asynchronous traffic. It uses high-speed elec-
tronic control that prioritises all switching and memory oper-
ations and guarantees packet integrity while maximising
throughput. We believe that this is the first demonstration of a
self-routing photonic packet switch that resolves output con-
tentions and operates asynchronously.

Experimental setup: Fig. 1 shows the architecture of the
experimental 2 x 2 packet switch. A directly modulated DFB

word
generator

output A

3dB
splitter

DFB laser

variable input B output B
delay

optical path
—welectrical path

[Z2777)
Fig. 1 Architecture of experimental 2 x 2 packet switch

ELECTRONICS LETTERS 4th February 1993 Vol.29 No.3



