Considerations for Design of a Complex Multiplier

Vojin G. Oklobdzija
Department of Electrical and Computer
Engineering
University of California
Davis, CA 95616
vojin@eecs.ucdavis.edu
(916) 752-5634

Abstract

1In this paper we consider a design of a multiplier for the
multiplication of complex numbers. The numbers are
represented by two 13-bit parts with the same 6-bit
exponent. Multiplication of complex numbers was
examined from the perspectives of performance,
complexity and silicon area. The design shares the Booth
encoding for the Real and Imaginary parts including only
one Wallace tree of 4:2 adders for each part. The number
of adders used in the multiplier is also reduced. We
consider VLSI CMOS technology and the relevant
characteristics as they impact the implementation and
performance. The circuit has been designed and laid out
using 1 5um standard CMOS process

1. Introduction

The need for Digital Signal Processors (DSP) has
increased as a reflection of the increase in processing
power and capabilities, and also as a result of switching
from analog to digital signals in a wide range of
applications.

In order to increase their dynamic range, there is a need to
represent signals in floating-point number representation
and perform the operations as floating-point operations.
Given the fact that we represent signals as complex
numbers, operations on complex numbers represent a
large part of DSP operations. Since multiplication of two
complex numbers is a very frequent operation in many
signal processing algorithms, we have concentrated on an
efficient hardware implementation [1,2).

Straight forward implementation of complex number
multiplication for example,

P = (a+ib).(c+id) = (ac-bd)+i(ad+bc) (1)

requires 4 multipliers (each contains one adder) and 2
adders. A frequently used technique to reduce the number
of multipliers, is to share multiplications with the real
and Imaginary part by representing complex product using
the following formula:

1058-6393/92 $03.00 © 1992 IEEE

366

David Villeger, Thierry Soulas
Ecole Superieure d'Ingenieurs dElectrotechnique
et dElectronique
2 Boulevard Blaise Pascal, BP 99
93162 Noisy le Grand CEDEX
FRANCE
33-1-45-92-65-00

P = (a+ib).(c+id) = [(a-b)d+a(c-d)] + il(a-b)d+b(c+d)]...(2)
This yields:
Re[Pl=(a-b)d+a(c-d) and Im[P]=(a-b)d+b{c+d)

where the term (a-b)d is shared. In spite of saving on one
multiplication operation (either in hardware or software),
this method requires four extra adders. In addition,
attention needs to be given to normalization problems
after each multiplication, at the expense of both: time and
accuracy. Although advantageous in the case of a software
implementation, this method does not yield a clear
advantage when a hardware implementation is required.
Other methods such as CORDIC [3] are not well suited
for parallel implementations in hardware. Therefore it
might be better to consider the "straightforward”
multiplication of complex numbers and concentrate on the
implementation issues instead.

This paper describes a new design of a fast complex
number multiplier. By using a specific final adder
optimized for the signal arrival from the Wallace tree and
by sharing the Booth encoding and Wallace tree, we can
improve size, speed and accuracy.

2. Architecture

The multiplier is to operate on two complex numbers and
produce the result in one cycle. The complex numbers are
packed in one 32-bit word with the real and imaginary
parts sharing the same exponent. This allow us to store
the complex number in just one word in memory; yet
there is sufficient precision and dynamic range for the
class of signal processing applications that we are
considering. The representation of complex numbers is
given in Fig. 1.

8 Bit Exponent TS]

12 BitRealPat _|S| 12BitImaginaryPart |

Fig. 1. Representation of the complex number in one 32-
bit word

Multiplication of two complex numbers is performed by
first separating exponent parts and adding them together.

| wwonem Jo].000...000101{1] . 111300t 0110 |

4 ¥V H ¥
} Y|y {
Lzo Lzo
3/
il
SHIFT SHIFT

'y 1 !

[_Ewonen | |

Fig.2. Post Normalization Unit Organization

The numbers are assumed to be normalized to the greater
of the two: real and imaginary parts. The sum of the
exponents becomes the exponent of the result. It is clear,
given one common exponent for both the real and the
imaginary part, that the product could result in a non-
normalized number. Further, when normalizing the
product term with the common exponent it is only
possible to normalize it with the respect to one of the
parts: real or imaginary. We have chosen to always
normalize to the bigger one, i.e., we will shift the result
left until one of the parts becomes normalized. Given that
this is not a sequential process (one that we want to
accomplish in one cycle) the post-normalization process
can be quite elaborate. First, we have to count the leading
zeros (ones) in both parts. Second, we need to determine
the smaller of the two leading zeroes and use this number
to left-shift both, the real and imaginary part and subtract
this number from the exponent. This operation needs to
be accomplished in one cycle and it involves comparison,
leading zero detection, shift and subtract, Fig.2,

The multiplication algorithm that we used operates in a
rather standard fashion. It uses Booth encoding to reduce
the number of partial products and the Wallace Tree
method to sum the partial products, reducing them to two
operands which are added in a fast carry-propagate adder in
the final stage. Normalization is performed in the
following cycle. As it has been shown by M. Santoro
[4,5], the distribution of the silicon area occupied by the
multiplier can be divided into approximately four quarters,
One quarter of the layout area is devoted to the Booth
encoding logic, one for the Wallace Tree, and the other
two for the final adder and wiring channels, respectively.

367

Therefore, we decided to share Booth encoders for the real
and imaginary parts by Booth encoding terms a and b
where a as well as b are used to form & product with ¢ and
d. The real part of the complex product is form by
subtraction, ac - bd, while the imaginary part is formed
by summation, ad + be. We have also decided to
perform this summation / subtraction as a part of the
Wallace Troe, saving on two adders s well as redhucing the
timo if takes to genefate the pendact. The fact that both

TR T TR I e
N >M ° ?.;’. . ,'mﬁ "M 'y

%

proper hcod:::nfaignbi mdwr;"m tra bits: -
o Baix of 8 ts extra bits: two
for the encoded sign, and two for the carry in associated
with the complemeantation of the number. An additional
bit is inserted in the 14th bit position of each of the
product trees to be summed. This leads to an elegant way
of performing paratlel multiplication of positive and
negative numbers using Booth encoding without using
sign extension nor g correction term.

e
Booth
Encod

| Select AD

imaginary Part

Fig.3. Organization of the Multiplier
3. Implementation of the Wallace Tree

The best known technique for summation of the partial
products has been the use of Wallace trees [6]. They are
usually implemented by using full adders. They are also
referred to as 3:2 counters because they take 3 inputs of
the same "weight” and produce two outputs of two
different "weights". By "weight", we refer to the value
associated to the position of the digit. This is the

simplest and most straightforward technique. However,
the layout of such a tree is not regular. It takes more
space and utilizes wires of different and irregular lengths.
The layout of Wallace tree implemented using full adders
is shown in Fig.4.

Fig. 4. Layout of the Wallace tree

The Wallace tree can be implemented using variety of
counters and several schemes have been proposed, the best
known being Dadda's scheme Dadda [7](8]. The 7:3 adder
is similar to the use of the full adder in concept, but it
results in more efficient implementation. The 7:3 and 9:3
adders are more efficient, but their advantage begins to
show only with Wallace trees bigger than the one used in
this particular case.

Recently, Santoro used 4:2 counters [S]. They are a
special case of using 3:2 counters or full adders which
differ only in the ways they are implemented (from the
full adders) and in the way those adders are interconnected
inside the 4:2 counter. The 4:2 counter has 5 inputs (4
partial products and a carry input) and 3 outputs (2 carry
outputs and the sum). The interesting feature of this
counter is that the carry output signal from the counter
does not depend on the carry input to the counter.
Therefore, carry is propagating only inside the counter
through the two adders used to implement the counter. We
used the 4:2 adder whose circuit is shown in Fig. 5. The
implementation using 4:2 counters turned out to be more
regular.

Comparing both 3:2 and 4:2, trees, the tree of 4:2
counters has half of the levels compared to the one using
3:2 counters. Signal propagation in the 4:2 counter
involves propagation through 4 XOR gates compared o0 a
3:2 counter involving 2 XOR gates in the critical path.
This makes those two implementations almost
equivalent, except for the advantage in layout regularity
exhibited by the scheme using 4:2 counters. However, we
were able to redesign the 4:2 counter in such a way that
the worse case propagation through 4:2 counter involves
3 instead of 4 XOR gates.We have chosen to implement
Wallace tree consisting of full adders, and a tree of 4:2

368

adders and compare only those two choices and exclude
7:3 and higher order counters from our considerations.

“ 13 12 "

FA

Cin

NV

FA

/Z__

Fig. 5. Structure of 4:2 counter

[s

3.1. Signal Arrival Time in the Multiplier

The speed of Wallace trees is critical; it depends on the
number of levels and the way the counters are
interconnected. We have two solutions to add the partial
products. The first is to have Wallace trees for ac, -bd,
ad and be, and the second to add the results separately.
This would involve two carry propagation operations
instead of one. In both cases reducing both partial
products to two operands for the final addition would add a
level or two (if we used 4:2 or 3:2 counters respectively)

Therefore we decided to design one common Wallace tree
for both partial products and performing addition /
subtraction in one common Wallace tree. This does not
necessarily result in a speed increase; however, it does
result in more compact layout and more regular wiring,
which is reflected in the speed of the multiplier.

In terms of speed, signals originating from the Wallace
tree arrive at the output in very different times. It was
observed that they arrive sooner at the ends of the
multiplier tree, while the signals in the middle of the tree
are arriving last [11]. The ideal situation would be if we
can trim some of the delay from the middle of the tree and
distribute it toward the ends. This optimization process
would yield a more balanced tree and shorten the longest
path.

We have implemented two types of Wallace trees: one
using 3:2 (RWT) and other using 4:2 (MWT) counters
and compared their delays and signal arrival profile. They
are shown in Fig.6.

Signal arrival profile: RWT and MWT

Delays (nS)

rNACNONBS A0 ~NATNONG GO
rrrrrererrr e

Fig.6. Signal Arrival Profile for RWT and MWT

We can observe that the use of 4:2 counters results in a
signal arrival profile that is more balanced compared to
the one using 3:2 counters. The total delay of the tree
utilizing 4:2 counters is t = 53.3 nS while for the one
using 3:2 counters the delay is t = 56.3 nS. This is not a
substantial difference, however, for multipliers with wider
operands this difference would be larger. This is attributed
to the change in the signal paths in the tree. If we use 4:2
counters or even ones with higher compression ratios, for
example 6:3 or 8:4, the critical paths are shifted more
horizontaly, thus adding the delay to the end bits and
taking it away from the middle bits. With the proper mix
of counters, we believe it is possible to design a Wallace
tree exhibiting a balanced signal arrival [work in

progress].
’mome

lgl-nnn

13 bits

'hﬂha

bis 131025 bis 0t0 12

Fig.7. Organization of the Final Adder
4. The Final Adder

The final adder used in the last stage of the multiplier is a
Variable Carry Skip Adder [9,10], because this scheme

Signal Arrival Profile from the Multiplier: MWT

Delays (n8)

!
|
P
|

1234567 80101 H1A31MNNTINRI2ENNI2N0

Bit Position W vt
R

Fig.8. Signal Arrival Profile from the Multiplier

makes it possible to achieve good performance without
much additional logic. Another reason for using a VBA
adder is that the size of the individual blocks in the VBA
adder is fine-tuned to minimize the difference in delays
introduced by the carry-paths of the different length.
However, this optimization is done under the assumption
that all of the input bits to the adder arrive at the same
time. In our case this is not true, and we have modified
this scheme by applying the signal arrival profile
originating from the Wallace tree.

We have only implemented a 13-bit VBA adder, and used
the Conditional Sum scheme for ithe upper 13-bits [12].
The adder is shown in Fig.7. The critical path of the
adder, i.c. the carry signal, is implemented as a string of
multiplexers. This is because they are implemented from
the pass transistors in the CMOS library, making the
multiplexer even faster than a simple gate of the standard
cell library. This adder performs addition. of two 26-bit
numbers in t = 23.2 nS, assuming that all of the inputs
arrive in the same time. However, this is not a realistic
assumption in our case, and its delay is measured under
the signal arrival profiles obtained from the Wallace tree
implemented from the 3:2 and 4:2 counters. The delays
obtained are t = 39.2 nS for the regualr Wallace tree of 3:2
counters (RWT) and t = 39.1 nS for the modified one
MWT of the 4:2 counters. This shows the advantage of
using 4:2 instead of 3:2 counters. The signal arrival
profile for the multiplier (including the final adder) is
shown in Fig.8. The layout of the final adder is shown in
Fig.9. It turned out to be quite regular.

6. Conclusion

The structure of the complex multiplier presented in this
paper takes advantage of using one common Wallace tree
to perform summation of the partial products and
performing one add/subtract operation resulting in the real
/ imaginary part of the complex number product.
Considering that normalization and routing are slow
operations, we gained a great advantage by requiring only
one routing and normalization instead of two. In
designing the Wallace tree we achieved a careful balance
by using 4:2 instead the 3:2 counters. Should the word-
length in signal processors increase, further advantage
could be taken by using counters of higher order such as
8:4 or even 12:6. It should be easier to construct a more
efficient tree with more bits available, simply because
there are more possibilities, Also, different adders could be
used, including Carry Look Ahead adder optimized for the
signal arrival time. The Conditional Sum adder seems to
be a better choice when the adder size is considerably
increased. Further performance improvement can be
obtained by fine tuning the gates knowing that no gate is
symmetric, even the XOR. There is always a possibility
of improving the design of the tree, but partly at the
expense of the gain achieved by the asymmetric adder
(optimized for the different signal arrival).

We believe that the multiplier for complex numbers will
find its application not only in signal processors, but also
in the general and scientific computation environment.

Fig.9. Layout of the Final Adder

370

References

[1] N. M. Marinovich, V. G. Oklobdzija, , "VLSI Chip
Architecture for Real Time Ambiguity Function
Computation ", 25th Asilomar Conference on Signals,
Systems and Computers, November 4-6, Pacific Grove,
1991.

[2] N. M. Marinovich, V. G. Oklobdzija, , "A VLSI
Architecture for Real-Time Computation of The Cross-
Ambiguity Surface ", submitted for publication to IEEE
Transactions on Signal Processing, April 1992,

[3] J.E.Volder, "The CORDIC trigonometric computing
technique ", IEEE Transactions on Electronic Computers,
Vol EC-8, p. 330, September 1959,

[4] J.S.Walther, "A Unified Algorithm for Elementary
Functions ", SICC, p. 379, April 1971.

[5] Mark R. Santoro, Mark A. Horowitz, "SPIM: A
Pipelined 64X64-bit Iterative Multiplier”, IEEE Journal
of Solid State Circuits, Vol. 24, No. 2, April 1989.

[6] C.S. Wallace,
IEEE Transaction on Electronic
No. 1, February 1964,

"A suggestion for a fast Multiplier”,
Computers, Vol. EC-13,

[7]1 W.J. Stenzel, W J. Kubitz, "A Compact High-Speed
Parallel Multiplication Scheme”, IEEE Transaction on
Computers, Vol. C-26, No. 10, October 1977.

[8] Luigi Dadda, "Some Schemes for Parallel
Multipliers”, Alta Frequenza, Vol. 34, No. 5, March
1965.

[9]1 V. G. Oklobdzija, E. R. Barnes, "Some Optimal
Schemes for ALU Implementation in VLSI Technology",
7th Symposium on Computer Arithmetic ARITH-7, June
4-6, 1985, Urbana, Illinois.

[10] V. G. Oklobdzija, E. R. Barnes, "On Implementing
Addition in VLSI Technology”, IEEE Journal of Parallel
Processing and Distributed Computing, No.5, p. 716
1988.

[11] K.F.Panget al, "Generation of High Speed CMOS
Multiplier -Accumulators”, Proceedings of the
International Conference on Computer Design, Rye, New
York, October 1988.

[12] J. Sklansky, "Conditional-Sum Addition Logic*,
IRE Transactions on Electronic Computers, Vol. EC-9,
No.2., June 1960.

