An Implementation Algorithm and Design of a Novel
Leading Zero Detector Circuit

Vojin G. Oklobdzija
Department of Electrical and Computer Engineering
University of California
Davis, CA 95616
vojin@eecs.ucdavis.edu
(916) 752-5634

Abstract

A novel way of implementing the Leading Zero Detector
(LZD) circuit is presented. The implementation is based on an
algorithmic approach resulting in a modular and scalable
circuit for any number of bits. This implementation is
compared with the results obtained using modern Logic
Synthesis (LS) tools in the same 0.9u CMOS technology. Our
approach to LZD design yields both speed and area advantages
over LS.

1. Introduction

In any Floating-Point processor normalization is a
common operation. It consists of an appropriate left shift
until the first non-zero digit is in the left-most position.
The amount of shift is determined by counting the number
of zero digits from the left-most position until the first
non-zero digit is reached. The exponents are appropriately
decremented for the shift amount. The normalization is
normally performed before storing the numbers in the
register file (memory), commonly referred as post-
normalization, and also before the operation is performed,
prenormalization. In both cases the special circuit
implemented (in hardware) to detect the number of leading
zeroes is referred to as Leading Zero Detector (LZD).

1.1 Implementation of LZD

Implementation of the LZD circuit is rather complicated.
This is because each bit of the result is dependent on all of
the input bits, which in the case of 64-bit word consists
of 64 inputs. For example 64-bit LZD circuit would
consist of 6 outputs, each dependent on 64 inputs. It is
obvious that such large fan-in dependencies are a problem
and that the resulting circuit is likely to be complicated
and slow. These types of circuits are very good candidates
for Logic Synthesis (LS) tools because their VHDL
description is on the contrary concise and clear. However,
the sophistication of LS tools has not reached a level at
which LS can deal with hierarchical structures and create
hierarchy in the design. Their approach is to rather expand
the logic in one level and optimize it via elaborate and

laborious logic minimization using often hours (even
days) of the CPU time. Therefore the design presented in
this paper is resulting not only in an efficient and fast

1058-6393/92 $03.00 © 1992 IEEE

LZD but is also providing an estimate and understanding
what LS tools can and what they can not do.

2 Design Approach

In our approach we use the inherent hierarchy associated
with the Leading Zero detection process and map it into a
modular design. In order to understand this design process,
let us examine first only the first two bits, as shown in
the Table 1.

Truth Table for two bi
| patiern position valid
1X 0 yes
01 1 yes
00 X no

Table 1. Two bit Truth Table for LZD

It is very straightforward to construct the logic for the two
bits representing valid bit (V) and position bit (P) for the
two bit case shown in the Table 1. The logic for the two
bit case is shown in Fig.1. Let us now extend the two bit
case into 4-bit case shown in the Table 2. Let us designate
the position bit for the first two bits (of 4-bits) as P and
P1 for the second two bits.

Bo 81

7

NP NV

Fig 1. Logic Diagram for P and V bits over a group of
two bits

Also we will designate VO and V1 as the valid bits for the
first two and second two bits respectively starting from
the left to right. The LZ position can be represented as a

function of those four bits as shown in the fifth column
of the Table 2. (minus sign represents complementation)

pattern | position | position | valid position
(binary)
1011 0 00 yes (-VO)PO
0100 1 01 yes (-VOPO
0011 2 10 yes (-VO)P1
0001 3 11 yes (-VO)P1
0000 X XX no XX

Table 2. Truth Table for 4-bit LZD

The depth of the circuit is log(N) levels and in each level
valid bit is formed as a logical OR of the valid bits from
the previous level. The left valid bit V1 is inverted and
concatenated with the Pl if V=1, or with Pr if V1=0 and
Vr=1. This is achieved by simply multiplexing Pl and Pr
to the output of the multiplexer. This structure is shown
in Fig.2.

P<g:1>

Fig. 2. Structure of the group

From Tables 1-3 we can deduce the hierarchical structure
for the LZD and arrive at the following algorithm for
generating the number of Leading Zeroes:

Algorithm for generating LZ count:

(1) Form the pair of bits Bi, Bi+1 for i=0 to N-2
with bit 0 being the leftmost one

(2) Determine P and V bits for each pair

(3) for the next level determine the Pg and Vg
bits as function of two

pairs of inputs P and V in this level in the
following way:

Vg = VI + Vr where + is logical OR operation
of the left and right inputs

if Vi=l then Pg = 0,Pl
concatenation

where (,) is

else if Vr = 1 thenPg = 1, Pr

Repeat the step (3) for log(N) - I times

It can be easily concluded that the logical depth of this
circuit is log(N) stages where the pass through each stage
is of the complexity of the multiplexer or one level of
logic. It tums out that in many CMOS circuit families
the multiplexer is actually implemented using a pass-
transistor structure and therefore is even faster than a
regular CMOS gate. This is the reason for extraordinary
speed of this scheme for LZD.

In addition we might want to save on one level and
instead of log(N) levels implement this scheme in log(N)
- 1 levels. This is achieved by starting with the groups of
4 bits and proceeding in the way described by the
algorithm. In CMOS this is usually the most we can do
in terms of the logic levels, because any further
compression of the number of levels would pass the point

Truth Table for 8-bit LZD
"left" nibble "right” nibble

bit pattern position valid PO VO P1 V1
1XXX XXXX 000 yes 00 yes
01XX XXXX 001 yes 01 yes
001X XXXX 010 yes 10 yes
0001 XXXX 011 yes 11 yes
0000 1XXX 100 yes no 00 yes
0000 01XX 101 yes no 01 yes
0000 001X 110 yes no 10 yes
0000 0001 111 yes no 11 yes
0000 0000 XXX no no no

Table 3. Truth Table for 8-bit LZD

392

of diminishing returns as far as the speed of this scheme is
concemed. However in technologies such as ECL we can
take further advantage and implement this scheme in
log(N)/2 levels.

3. Implementation

We implemented six LZD prototypes of various sizes.
They were laid out and simulated for worst case
conditions. In addition, we repeated those designs using
Logic Synthesis tools (LS), produced layout and simulated
the results. This provided enough data for performance
analysis and evaluation of the LS tool.

3.1 The Layout

The regularity of the novel LZD design can also be used
to produce more efficient layout. By creating each cell as a
basic building block for each stage the entire circuit can be
routed primarily in metal lines flowing in the direction of
the data-path. This results in a better performance and
facilitates the inclusion of LZD in the regular data-path of
the floating-point or any other unit that needs LZD
circuit,

We have also tried to explore the regular and hierarchical
structure of this design by applying this to the layout
using the approach described by Vuillemin and Guibas [1].
The idea here is to lay the tree-like structures like this one
on a rectangular pattern in such a way that as the signal
progresses down the levels, the size of the cells is made
bigger increasing on their driving capability so that the
signal can drive more inputs in shorter time. We carried
out this idea and laid the 32-bit LZD circuit such that the
X dimension of the circuit was kept constant. However,
we obtained mixed results and overall this approach did
not improve the performance. This is explained by the
fact that this circuit maintains regular fan-in and fan-out,
and neither one of them increases when reaching the levels
closer toward the output. The reason why the performance
was not affected is because the input capacitance of each
also grew proportionally, as did the driving capacity of the
gate. The increase in delay caused by the capacitance
increase more than offset the improved driving capability,
resulting in slightly negative gain. Therefore this idea [1]
was not found to work in our case, However, the 32-bit
LZD with rectangular layout did provide much better
circuit when driving larger output loads. For a 1pF output
load, we achieved speedup of 16%under the nominal
operating conditions and 12% for the worse case.

Simulation Conditions
Tox=150A, VT=0.6V, Weff=0.7a, Leff=0.6u
Rmtl:lMohm/sq
NC 40V,125C Nominal
wC 28V, 125C Worse Case

Table 4. Simulation Conditions

393

Layout of the 32-bit LZD is shown in Fig. 3. It has 4
rows of cells which were placed using Timberwolf
package resulting in an arca of 163340 microns.

Fig. 3. Layout of 32-bit LZD

3.2 Performance

The performance of the novel LZD was simulated under
nominal and worse case conditions, NC and WC
respectively. The NC and WC conditions are characterized
in the Table 4. together with the parameters typical for
this CMOS process.

The performance achieved with novel LZD is shown
in Tables 5-7. Table 5. shows the speed of the LZD for
different sizes starting from N=25 to N=128 bits. This is
also shown in the Fig. 4. We are showing the speed of the
unbuffered LZD (without the output buffers) for the
nominal and worse-case conditions.

Performance of novel LZD
Bits WC [nS] NC [nS]
25 1.69 4.49
32 1.7 4.52
53 9.08 3.35
64 9.09 5.37
112 10.7 641
128 10.7 6.43

Table 5. Performance of the new LZD circuit under
nominal and worse-case condition

Comparison of the Algorithmic LZD circuit with the LZD obtained via Logic Synthesis
Algorithmic LZD (regular layout) LZD obtained with Logic Synthesis
no load 1.0 pF load regular no load rectang. 1.0 pF load
Arealu] wC NC wC NC Area(u] wC NC Arealu) wC NC
[nS) [nS] [nS] [nS] [nS] [nS] [nS) [nS]
163X340 7.7 45 12.8 7.95 186X403 12 5.8 181X473 13.6 7.7
86mils 116mils l33mﬁ

Table 6. Comparison of the Algorithmic LZD and Logic Synthesis results

In Table 6. we compare the results for a 32-bit LZD using
our approach and the one obtained using Logic Synthesis
without load and with 1.0 pF loading capacitance on the
outputs. The algorithmic LZD outperforms the one
obtained via LS under no load conditions.

Under 1.0pF load LS obtained LZD is slightly faster under
nominal conditions and this is because we are comparing
the regular layout with the rectangular (buffered) one. In
any case it has been demonstrated that our Algorithmic
LZD circuit outperforms the LS in each of the cases and
the improvement in performance ranges from 10% (NC
rectangular layout) to 36% (WC regular layout). The
improvement in the area is from 13% (rectangular layout)
up to 26% (regular layout). This clearly demonstrates
superiority of the Algorithmic approach. In Table 7. we
compare the results for a 32-bit LZD using rectangular
layout versus one with unconstrained layout under load
and no-load conditions. We observe that under the no load
conditions the LZD circuit obtained via regular layout
performs better. However with 1.0pF load the rectangular
LZD outperforms the regular one in both NC and WC.
This is attributed to the stronger driving capabilities of the
final stages. However, we feel that just adding stronger
buffers at the output nodes would still make the regular
case perform better.

4. Conclusion

In this paper we have described an Algorithmic
approach to design Leading Zero Detector. This circuit has
been implemented in 0.6 CMOS technology and
compared to the results obtained using Logic Synthesis
under various conditions and for different layout
approaches. The Algorithmic approach outperformed LS
consistently ranging from 10% - 36% in terms of the
performance and 13% - 26% in terms of the layout area.
We have clearly demonstrated on this circuit the
superiority of the algorithmic approach. The lessons
learned apply not only to this particular design (of a
LZD), but could be taken quite generally as an indication
that in the performance of critical, especially data-path,
circuits careful analysis of the problem and clever
management of the hierarchy pays big dividends.
Although very useful, LS tools are still not capable of
managing hierarchy and making intelligent choices when
it comes to design and therefore they should be treated

394

accordingly. The novel LZD has also shown to be very
useful since it is often a part of the critical path in the
floating-point unit and the results obtained are quite
remarkable.

Acknowledgment

I gratefully acknowledge Vincent Chang for running the
simulation and timberwolf program. The idea was
conceived in June 1987 while the author was on the TF-1
project at IBM T.J.Watson Research Center in New York.
I am grateful to Monty Denneau from IBM for his ideas
and discussion during the project.

References
[11 J. Vuillemin, L. Guibas, "On Fast Binary Addition in

MOS Technology"”, Proceedings of ICCC'82, New York,
September 28, 1982.

Pedormance for NC and WC as a function df size

WC [n8)
3

20 40 60 80

100

120
B xepg
W weps)

140

Bits

Fig. 4. Speed of the novel LZD vs size

Comparison of the Algorithmic LZD circuit obtained via re; vs rectangular layout

Algorithmic LZD (regular layout) ‘ Algorithmic LZD (rectangular layout)
no load 1.0 pF no load 1.0 pF
load , load
Area wC NC WwC NC Area wC NC wC NC
u [nS) [nS} [nS] [nS} [u] [nS] [nS) [nS) [nS)
163X340 71 4.5 12.8 795 |206X363 9.5 493 114 6.9
86mils 116mils

Table 7. Performance comparison of the regular vs rectangular layout of the algorithmic LZD

396

