VLSI Chip Architecture for Real-Time Ambiguity Function Computation

Nenad Marinovich
Department of Electrical Engineering
City College of CUNY
New York, NY 10031

Abstract
A chip architecture is developed that evaluates the cross-
ambiguity function samples on an arbitrary sampling grid
at real-time radar rates. It can be scaled to match different
date lengths and sampling grid sizes. It is shown to be
potentially quite useful for a wide range of typical radar
system.

1. Introduction

It is well known that, under ideal conditions, the optimal
procedure for joint estimation of the delay and Doppler
shift of a radar echo requires computation of the complex
cross-ambiguity function between the transmitted and the
received signals. Even under non-ideal conditions, in a
real world operating environment, this procedure is
considered to be the best suboptimal one. However,
prohibitively high computational complexity and the lack
of efficient algorithms and appropriate hardware have been
preventing its implementation in practice. Recently, a
new algorithm for efficient computation of the decimated
cross-ambiguity function on arbitrary sampling grids have
been developped by Auslander, Gertner, and Tolimieri
(AGT algorithm){1,2]. Its important feature is that the
computations on complementary, decimated sampling
grids can be performed independently, in parallel, in the
same time it takes to compute the FFT of the received
data vector. Combined with the progress in VLSI
technology, this makes the implementation of the cross-
ambiguity function based receiver feasible at present time.
In this paper, based on a simple modification of the AGT
algorithm, we develop a VLSI chip architecture for real-
time computation of the cross-ambiguity function
magnitude. Using actual radar examples, we discuss the
design trade-offs, and demonstrate the scalability of the
architecture needed to accommodate different data lengths
and sampling grid sizes.

2.Background

Let x(t) and y(t) denote complex envelopes of the
transmitted and received signals, respectively, and x(n) and
y(n) sequences of their samples. The complex cross-

1058-6393/91 $01.00 © 1991 IEEE

74

Vojin G. Oklobdzija
Department of Electrical Engineering and
Computer Science
University of California
Davis, CA 95616

ambiguity function between the received and transmitted
signals is defined as:

M A= yox' - ne™dr

Regularly sampled CAF is defined on an L x L sampling
grid as

L 2
) A, (kAV,IAT)= Y y(Dx"(i-De L di
i=0

0<I<L ——liSk<£

where L>C+D-1, with C and D being the transmited and
received sequence lengths, respectively. Given that data
volume L is very large, typically in thousands, the high
computational cost in Eq. (2) becomes readily apparent
even when FFT is used. In addition, what makes Eq. (2)
impractical to use is the requirement, typically
encountered in practice, that the samples of the CAF need
to be computed on a considerably smaller sampling grid
corresponding to a desired quantization of delay and
Doppler shifts. This is indicated in Fig. 1 where P and R
are the numbers of Doppler and range measurement bins,
respectively. However, the efficient computation of the
CAF samples on a desired grid is possible with the help
of the new AGT algorithm [1,2] that is outlined below.

Initial step requires the computation of the discrete Zak
transform (DZT)[1] of the received data vector. If L=MN,
the DZT is defined as an M x N matrix

N1 . - j-ZN—ﬂir
B3) Z,(rs)=Y y(s+iM)e

i=0
This computation can be visualized in the following way:
first, rearange the data vector into an M x N matrix by
filling the rows with successive blocks of M data
samples; then, replace each column by its discrete Fourier
transform (DFT) In the next step, pointwise
multiplication of the received data DZT with the
precomputed DZT of the transmitted data is performed,
followed by the 2-D inverse DFT of the result. This gives

the L samples of the CAF on a decimated M x N
sampling grid, with sample spacing along the Doppler and
delay axes being N Av and M At respectively:

L2 P2 0 m iz
Fig. 1 Regular (fine) and desired (coarse) sampling grids

(4) A,(mNAv,nMA%)=2D-DFT™Z (r,5)Z"

1 MM . LN
=— Z(r,s)Z (r,s)e N M
MNZZ L(r.8)Z"L(r,s)

When FFT algorithms are used for DFT computation, this
procedure takes about the same amount of computation as
an L-point FFT of the raw data. An important property of
the CAF that permits its computation on arbitrary
domains [2] is the time and frequency shift property:

(5) xp®=x(1—6) ™ =
A,,(v,D)=e"™A (v+¢,7+6)=
1A, (V+¢,7+ G)I=IAW (v, o)l

In particular, to compute the magnitude of the CAF on
another sampling grid with arbitrary offsets ¢ and 0, we
use the AGT algorithm with precomputed DZT for those
offsets:

(6) 1A, (mNAV+ ¢,nMAT + §)l=
|A,, , (MNAV,nMAT)l

For each desired offset pair (¢, 6), we repeat the
computation of (6) using the AGT algorithm, Eqs. (3) and
(4), to obtain the samples of the CAF magnitude on the
desired uniform sampling grid. Note that all the
computations performed for different ¢ , 0 pairs after the

DZT of the received data is determined, are independent and
can be performed in parallel.

3.Algorithm

The computation outlined above is too wasteful for the
non-uniform sampling grids such as the one displayed in
Fig. 1. However, a simple modification permits its use in
such a case, to0. Namely, instead of computing all M x
N values in (6) for each offset pair, we should only
compute N samples along the m=0 axis

) 1A, (0+ ¢,nMAT + 6)I=
=12D - DFT™YZ,(r,5)Z",, (r,5)}|

1 ¥z 2% M-l

€N Z,(r,$)Z s, (r,5)
s=0

m=0

MN r=0
for each pair of offsets
@) ¢=%(v,+pa) p=0,1,... ,§—1
MAr R
- = —_—— =0,1, , -1 =—
6=q8 B="7C q Q-1 0=+

Note that the 2-D M x N inverse FFT in (4) has been
replaced by an N-point inverse FFT and N x (M-1)
additions. The total number of multiplications required if
radix-2 Cooley-Tukey FFT is used is

(9 PQN(log N + 1)/2 + MN(log N)/2 =
=(PR + L)(log N)/2

Our goal is to develop a modular architecture that can be
integrated on a chip while allowing the independent
computations to proceed in parallel. With that in mind
we organize the computation (7) in the following reduced
grid CAF algorithm (RGCAF) that minimizes necessary
RAM storage:

BEGIN RGCAF
FOR each column of the input data matrix DO
- compute its FFT
FOR each ¢, 0 pair DO IN PARALLEL
- pointwise multiply with respective column
of the precomputed reference DZT of x 6.0
- accumulate the resulting column vector over
all input columns
DONE
DONE
FOR each ¢,0 pair DO IN PARALLEL
- compute the inverse FFT of the result
- output the magnitude of the result
DONE
END RGCAF

Visual illustration of this computation is given in Fig. 2.

-

Fig.2 Computation Flow

4.Architecture

Examination of the RGCAF algorithm indicates that two
processing modules are required: one to compute the N-
point FFT of the input data matrix column - input module
(IPM), and the other to perform the pointwise vector
multiplication/accumulation and the inverse N-point FFT
- parallel processing module (PPM). Data-path that
computes the RGCAF algorithm is shown in Fig 3. The
core computation in both modules is that of an N-point
FFT. Least complex hardware implementation of the FFT
for our purposes is based on repetitive use of a basic radix-
2 Cooley-Tukey FFT butterfly processing element (PE)
and requires two N-word RAM buffers to alternate the
storage of input and output vectors during successive
stages of the radix-2 Cooley-Tukey FFT algorithm. In
addition, an N-word ROM of FFT coeficients is required
in each processing module, and different PPM's have an L-
word ROM to store the precomputed DZT of the delay and
Doppler shifted transmitted signal for different ¢,0 shifts.
Finally, a magnitude estimator is a combinational
network that generates an approximation of a complex

number magnitude according to the following simple rule:
A0) A=R+jI

IRI
Zir+Lin
8)

| Al= max 1 P
Lir+Zin
3 8
171

This magnitude estimator has maximum error of 3% [3].

Fig. 3. Organization of the Data-Path

To accommodate the large dynamic range typical in radar
applications and the fast growth of the signal through the
processing chain, the complex data is internally
represented using a following hybrid floating-point
format[3):

an (m, + jm,)2°

where my and m; are real and imaginary component
mantissas, represented as 2's complement fractions, and e
is the positive exponent whose initial value is set to zero
for the input signal. Since the data amplitude will only
grow during the processing, exponent is limited to be a
positive integer. Rather broad range of radar applications
can be accommodated with 11 bit mantissa and 5 bit
exponent which requires a 27-bit complex word size[3].
The floating-point butterfly processing element which
may pass through the data from its left side input, and
permits pointwise vector multiply/accumulate operation is
shown in Fig. 4.

It is implemented as a four-stage pipeline that computes
the inverse FFT in the follwing manner:

1) - first butterfly input is loaded from the input RAM
buffer into SR1;

2) - SR2 is loaded with the product of SR1 and 1/2 of an
FFT cocfficient;

- SR3 is loaded from the input RAM buffer with 1/2 of
the second butterfly operand;

3) - difference SR3-SR2 is placed in SR5;

- sum SR3+SR2 is placed in SR4;

- SR1 is loaded from the input RAM buffer with the third
input operand;

4) - first butterfly output from SRS is stored into the
other RAM buffer;

- SRS is loaded with SR4;

- SR2 is loaded with the product of SR1 and 1/2 of an
FFT coefficient;

- SR3 is loaded from the input RAM buffer with 1/2 of
the fourth input operand;

5) - second butterfly output from SRS is stored into the
other RAM buffer;

- difference SR3-SR2 is placed in SR5;

- sum SR3+SR2 is placed in SR4;

- SR1 is loaded from the input RAM buffer with the fifth
input operand;

6) - third butterfly output from SRS is stored into the
other RAM buffer;

- SRS is loaded with SR4;

- SR2 is loaded with the product of SR1 and 1/2 of an
FFT coefficient;

- SR3 is loaded from the input RAM buffer with 1/2 of
the sixth input operand;

7) - fourth butterfly output from SRS is stored into the
other RAM buffer;

- difference SR3-SR2 is placed in SR5;

- sum SR3+SR2 is placed in SR4;

- SR1 is loaded from the input RAM buffer with the
seventh input operand;

.......continue.......

Fig.4. Organization of the Processing Element

77

This process is continued until all the data from the input
RAM buffer has been processed. Then the role of the
input and output buffer is exchanged and the whole
process is repeated for the next stage of the FFT
computation. In computation of the forward FFT, division
of operands by 2 is not performed.

The whole FFT computation takes approximately N(log
N) clock cycles (neglecting the pipeline latency). We can
now estimate the total execution time to be
approximately equal to

(12) Tx=[L{og N + 1)]Tc

This is less than the time needed for the computation of
a single L-point FFT of the raw data with circuits of
comparable complexity. Regularity and modularity of the
proposed architecture make it easy to integrate. It can be
scaled to accomodate different data lengths L. On one
extreme, for huge data lengths, an IPM and a single PPM
would be put on a single chip and P x R/N chips will be
required to generate P x R CAF samples. On the other,
for short data lengths, an IPM and many PPM's would
fit on a single chip. How many chips would be required
depends on the desired number of Doppler bins P, and on
how many of the R range bins are computed per PPM.
The trade-offs involved are discussed in the next section.

S5.Radar Examples

Practical implications of the proposed chip architecture
can be assessed by considering how could it be used in
actual radar systems. With this goal, we consider several
typical pulsed Doppler radar systems [4]. We estimate the
equivalent gate count of the required processing modules
in each case, and estimate the chip count knowing that,
with the current state of the art, up to about 500,000
gates are available on a single chip. With the present state
of the art, it is estimated that the clock cycle of 10nsec is
sufficient for proper operation of the processing element
in Fig. 4 and for memory access[S]. This value is used
when estimating the execution times.

A. Airbomne early warning radar (AEWR)

This radar operates in the UHF band, with the range 300
nautical miles = 1.8msec, the pulse repetition frequency
PRF=300Hz, data block L=32K samples, R=4K range
bins, and P=8 Doppler bins. Using N=1K and M=32, we
estimate the gate count to be 120K for IPM and 220K for
PPM.

Consequently, only one PPM together with an IPM can
be put on single chip that will compute 1K range
samples. Therefore, four chips are required per Doppler
bin, and total of 4P=32 chips are required.

Total execution time is approximately T=3.2pusec. The
input data block rate is determined by the longer of the
maximum time-of-flight (2 x 1.8msec) and the pulse
repetition interval (3.3msec). It equals one L-point data
block per 3.6 msec in this case. Therefore, to keep up
with the incoming data rate, one 32-chip set is sufficient.

B. 2-D Air surveillance radar (ASR)

This is an S-band radar, with range 60 nmi = 0.36msec,
PRF=1.2KHz, data block L=4K, R=1K range bins, and
P=8 Doppler bins. Using N=1K and M=4, the estimated
gate count is 20K for IPM and 125K for PPM.

With room to spare, three PPM's can fit on a single chip
together with an IPM and all the range samples for three
Doppler bins can be computed with a single chip. Three
chips are required for all the desired Doppler bins.

Each CAF computation can be completed in
approximately 0.44msec. The input data block rate is one
block per 0.83msec. Again, one set of three chips is
sufficient to keep up with the incoming data.

C. Portable battlefield reconnaissance radar (BRR)

This is a Ku-band radar, with range 6 nmi = 36usec,
PRF=12KHz, data block L=1K, R=256 range bins, and
P=10 Doppler bins. Using N=256 and M=4, the estimated
gate count is 6K for IPM and 32K for PPM.

Twelve PPM's can fit on a single chip which is sufficient
for the computation on all the range and Doppler bins.

Execution time is approximately 92usec, which can keep
up with the data coming in at the rate of one block per
100usec. In this case one chip is sufficient to implement
the radar's Doppler processor.

D. Airborne intercept radar (AIR)

Operating in X-band this nose-mounted radar has range of
30nmi = 180usec, PRF=150KHz, data block L=1024,
R=256 range bins, and P=50 Doppler bins. Using N=256
and M=4, the estimated gate count is 6K for IPM and 32K
for PPM.

Fifteen PPM's can fit on a single chip and it can compute
all the range samples for fifteen Doppler bins. Four chips
are needed for all the required bin computations.

It should take approximately 92usec to complete the
computation. To keep up with the incoming data rate of
one block per 360usec only one set of four chips is
needed.

78

6.Summary

A VLSI chip architecture for real-time cross-ambiguity
function computation in radar systems was developed and
its practical implications were assessed. It is based on a
modification of a recent algorithm for decimated
ambiguity function computation[1,2].

Bulk of the chip is memory, both RAM and ROM. FFT
is performed by repetitive use of a single butterfly
computing element. With the present state of the art, the
resulting low circuit complexity and simple control allow
integration of the processing modules on one or more
chips, depending on the radar system requirements,
avoiding the chip-crossing penalties and improving speed.

The architecture is regular, easy to integrate, and modular.
It can be scaled to match different data iengths. To
accomodate various sampling grid sizes and input data
rates, chips can be parallelized and pipelined with virtualy
no overhead. Potential utility of this architecture for a
broad range of radar applications was illustrated on several
examples of typical systems.

7.References

[1] L. Auslander, 1.G. Gertner, and R. Tolimieri, "The
discrete Zak transform application to time-frequency
analysis and synthesis of nonstationary signals", IEEE
Trans. Sig. Proc., vol 39, no. 4, pp. 825-835, April
1991.

[2] L. Auslander and 1.G. Gertner, "Computing the
ambiguity function on various domains", submitted for
publication.

[3] J.H. McClellan and R.J. Purdy, "Applications of
digital signal processing to radar”, Chapter 5 in
"Applications of Digital Signal Processing", A.V.
Oppenheim (ed.), Prentice-Hall, 1978.

[4] D.C. Schieher, "MTI and Pulsed Doppler Radar",
Artech House, 1991.

[5] R.K. Montoye, E. Hokenek, and S.L. Runyon,
"Design of the IBM RISC System/6000 floating-point
unit", IBM Jour. Res. and Devel., vol 34, no. 1, pp. 59-
70, Jan. 1991.

