ARCHITECTURAL STUDY FOR AN INTEGRATED FIXED
AND FLOATING-POINT VLSI-ASIC PROCESSOR

V. G. Oklobdzija, Greg Grohosky

IBM T. J. Watson Rescarch Center
P.O.Box 218
Yorktown Heights, NY 10598

ABSTRACT

The architecture of a single-chip processor with integrated fixed and floating point execution
units is presented. A single-chip implementation is enabled by current ASIC technology offering
well in excess of 50,000 gates per chip and delays on the order of 600 pS per gate [16]. The
basic principles of RISC architecture are used and a fast floating-point processor is architected
as an integral part of the chip. The architecture is intended to make the processor attractive
for a wide range of scicntific computing implemented as a part of a special purpose machinc.
The architecture takes advantage of the high level of integration and low power consumption of
CMOS technology. The integration of the exccution units and an efficient inter-unit commu-
nication protocol aveid off-chip delay penalties associated with comparable implementations
which use scveral chips.

INTRODUCTION

One of the principles of RISC architecture is to trade complexity for the speed of exccution
[11,[21,[31,[4]. Specd is achieved by designing a small, simple instruction set which exccutcs
on simple hardwarc. The simplicity of the hardware allows for fast instruction cxecution.

Given such high performance one expects to find RISC machines uscd for solving a variety
of problems including intensive floating-point computation in such applications as scicntific
computation. However, the floating-point performance of RISC machines has not been
impressive [9],[10],[11]. This is caused by the fact that floating-point pcrformance has not
been emphasized in current RISC architecturcs. To improve floating-point performance
RISC machines use a varicty of "off the shelf"" processors. These processors are either not
able to match the fixed point performance or much of their power is lost in inadcquate
communication between the fixed and floating point units. The performance loss duc to
communication is a consequence of the communication protocol being adapted rather than
being an integral part of the processor design.

Our goal is to design a processor with a simplc architecture which allows for rapid implc-
mentation and balanced fixed and floating point performance in a wide range of computa-
tion.

The capability of currently available ASIC technology allows for the integration of complex
designs on a single chip. ASIC technology also offcrs a shorter design cycle than a full cus-
tom VLSI design. This means that an ASIC-based RISC product can reach the market faster
than a custom-designed CISC processor. Thus, an ASIC RISC processor is a logical choice.

MOTIVATION

Technology

Today many "silicon foundrics" offer services to design and process gate arrays with turn-
around times ranging from 2 to 10 weeks. Most of them use CMOS technology with ground
rules of less than 1.5 microns. A 15 mm by 15 mm chip contains several hundred thousand
transistors; these chips may contain from a few thousand gates to a hundred thousand gatcs
or morc. These gates can switch in scveral hundred pico-secconds depending on their loading
and power dissipation. Using figures of 12-15 levels of logic per cycle and 1 nS propagation
delay per level, cycle times of 20 nS are achievable.

High quality packages are available which contain scveral hundred 1/0 pins, can simultane-
ously switch many output pins at high clock rates, and can dissipate the power of fast, dense
chips [15],[16].

Architecture and Organization

The main drawback of current-gencration RISC processors is their relatively poor perform-
ance on floating-point computation. This is even more marked when one considers that due
to their high performance they belong to the range of scicntific work stations where intensive
floating-point computation is rcquired. To rcmedy their deficiencies on the floating-point
performance, some of them resort to the usc of commercially available floating-point
processors. This has several disadvantages:

e First, the floating-point performance of many "off the shelf" floating-point units is
relatively poor, and this diminishes much of the high performance achicvable by the
processor. This situation has somewhat been changed by the availability of the new
generation Weitcek floating-point chips [12].

® Sccond, with a sufficiently high-performanc. loating-point unit, much of the potential
performance is lost in fixed-point processor to floating-point processor communication.
Instructions must be dispatched to both units, data must be transferred between the
units, and the units must occasionally be synchronized to ensure proper program exe-
cution. Designers have few choices to improve the performance if the fixed and floating
point processors are not specifically designed to work together. Such a combination
lacks a well conceived communication protocol and supporting dataflow.

® Third, signals take a significant amount of time to propogate between chips relative to
the delays of gates, and the second level of packaging introduces physical and electrical
effects which cause the rclative timing of signals to vary. The resulting delays and clock
system skews are aggravated if the "off-the-shelf'"" floating-point unit consists of several
chips.

The main objective of this architecture is to provide an integrated fixed /floating-point unit
with a unificd communication protocol. In addition the exccution speeds of the two units
should be comparable in order to avoid unneccssary synchronization delays. The processing
units should be able to achicve as much parallelism as possiblc, i.e. they should be allowed
to execute their instructions independently of each other most of the time. Maximizing their
parallelism improves the performance by minimizing the impact of:

® aslow opcration in one of the processing units on the other
e dispatching data and instructions

® synchronization
Also, by cxecuting two (threc) instructions in parallel.

First we will describe the proposed instruction set architecturce of the chip. Then the logical
organization of the chip will be described with emphasis on the coupled fixed and floating
point cxecution units. The results of some initial studies on exccution unit size and dclay are
also discussed.

INSTRUCTION SET DESIGN

The instruction sct follows the principles of RISC architecture. All the operations are per-
formced on data available in registers, and the transfer of data between the processors and
memory is through the Load and Store instructions only. This applics to both fixed-point
and floating-point processors.

"Transfer" instructions perform operations on data in either the fixed point or floating point
register files and to transfer the result to the other unit.

The instructions are choscn so that the instructic.. sct represents a small set of carefully sc-
lected instructions which are simple to implement and which execute in one cycle. Whencver
the implementation seems to complicate the hardware and add complexity, the decision is
made to emulate the function in software. This applies to both fixed and floating-point units.

There are 32 registers in the fixed-point unit and 32 registers in the floating-point, organized
as 32 32-bit registers or 16 64-bit registers. Therefore we need 5 bits for the register address
in the instruction. The targcet register of every instruction is named explicitly, so that cach
operation is of the R1, R2 type where the result is destined for R3. With 15 bits uscd for
addressing the registers and 7 for the opcode, instruction lengths of 24 and 40 bits would
provide a better utilization of memory and code space. However, this requires a substantial
overhead for demultipicxing the instructions from the Instruction Buffer, checking if the
entire instruction is contained in the Buffer, and if it is not, checking if a page crossing is
involved. Therefore our decision is to use a single instruction length of 32 bits for the sake
of simplicity. The remaining bits are used conveniently for decoding the information about
the type of the operands and operation.

Instruction Types

The instructions belong to the following catcgories:

1. Load and Store Instructions (fixed and floating-point)

LDI R1,R2,R3
Load Indexed: R1 <- M[R2 + R3]
LDI R1 R2 R3 SD XF
0 7 12 17 22 30 31 32

XF = 0/1 Load Fixed/Floating point register
SD = 0/1 Single/Double Word load (I'P only)
2. Address Computation (fixed-point only)

CAI R1,R2,R3
Address computation indexed : R1 <- R2 + R3

CAl R1 R2 R3
0 7 12 17 22 32

3. Branch with or without executing the next instruction and link

BRAX BA

Branch Absolute with execute:
Execute next instruction,

IAR <- sign extended BA

BRAX BA

4. Conditional Branches with and without link

BCNI CN , BI

Branch on condition bit specified by CN in the condition code register
Not condition is included in the condition code CN.
updated IAR <- sign extended (BI + IAR)

BCNI CN Bl
0 7 12 32
5. Bit Manipulations (fixed-point only)
MRG RI1,R2,R3,PS,SZ
Merge SZ of R2 and PS from left and right of R3 into R1
MRG R1 R2 R3 PS SZ
0 7 12 17 22 27 32
6. Shift (fixed-point only)
SHR R1,R2,R3,S
R1 <- R2 shifted right for R3 position.
If S=1 sign extended if S=0 zero cxtended.
SHR R1 R2 R3 S
0 7 12 17 22 31 32
7. Arithmetic Instructions
ADD R1,R2,R3
Add: R1 <-R2 + R3
ADD R1 R2 R3 IF {SD |XF
0 7 12 17 22 29 30 31 32

IF = 0/1 Integer/Floating Add (FP only)

8. Logical Operations

AND R1, R2,R3
AND: R1 <~ R2 .AND. R3

|AND | R1 R2 R3 |
0 7 12 17 22 32

9. Transfer Instructions

TFFL
Transfer Fixed Point Register R2 into Floating Point Register 1
{ 32-bit quantitics)

TFFL F1 R2
0 7 12 17 32

11. Multiply fixed, floating or integer operands

MLT F1,F2,F3
Multiply F1 <-F2 XT3

MLT F1 F2 F3 IF |SD
0 7 12 17 22 29 30 31 32

12. 1/0 instructions

PROCESSOR ORGANIZATION

The main components of the processor are shown in Fig. 1. The chip is divided into five
loosely coupled units: fixed-point, floating-point, instruction unit, memory controller, and
1/0 unit [6].

All data paths betwecn the memory controller and the processing units are 32-bits wide. The
fixed-point unit is responsible for address gencration for the floating-point unit, and the in-
struction unit is capable of handling branch instructions. The address inputs to the memory
controller originate from the instruction and fixed-point units. Instructions and data arc
dispatched from the memory controller to the instruction unit, fixed, and floating-point
processors. The channel unit is connected directly to the memory controller, since all the
1/0 communication is performed in a DMA fashion.

The processor cycle time is set for 20nS. The fixed-point unit is ablc to execute onc in-
struction every cycle. It can thercfore achicve a 50 MIPS peak ratc. It takes 3 cycles to cx-
ecute a basic floating-point operation (add/subtract or multiply).

In order to keep the design simple, there is no provision for a cache. Sophisticated branch
handling is provided for by kceping branch target instructions in a branch target buffer, and

Address Data Address

1 4 1
Memory
ittt Control -~ oo m e 3

324 32/ 33

S
.-.._-..__.___..
S

|

Instruction Unit Floating Point Fixed Peint

2
—F—
; Service Port Channel

| 8 o
k8

Figure 1. Processor Organization

by branching within the confines of the instruction buffer, in case the target instruction is
contained in the instruction prefetch buffer.

For data references, the absence of a cache is mitigated by interlcaving processor memory.
If fast static RAM is used, a cache is unnccessary for our intended application. If slower
dynamic RAM with static column modc is used, the intcrlcaving still permits the memory to
deliver a word every 20 nS for accesses within the same memory page.

Organization o f Processing Units

Fixed Point Unift - FXU

The fixed-point unit (Fig. 2.) operates in a 20 nS cycle. Exccpt for system control in-
structions, all instructions cxccute in one cycle.

The fixed-point unit contains a register file of 32 32-bit registers, organized as a two-port
read, one-port writc register file. It hasa nominal access time of 9.2 nS.

The outputs from the register file arc staged in two registers with imbedded input
multiplexers, A and B. The input to the staging registers comes from various sources: the
constant register supplying constants, the ALU, the link register, the loop counter, the
shifter, the leading zero count, and the mask and merge unit.

Data is exchanged between the fixed-point and floating-point units via two staging registers.
Each contains 32 bits of data and 5 address bits of the destination register in the fixed-point
/ floating-point register file. The transfer instruction first reads data from the register file
of the source unit and then placcs it into one of the two staging registers, together with a 5
bit destination tag. During the next cycle, data is written from the staging register into the
register file of the destination unit. There is no contention to writc into the same location
from any other pending operation since this transfer must be synchronized.

The shifter unit performs a shift for any number of bit positions (1 to 31) left or right with
the variations on the leftmost / rightmost positions. When shifting right, the rightmost bits
are either sign cxtended or filled up with zeroes. In case of a left shift, the leftmost side is
filled up with cither ones or zeroes. This is dependent on the S bit (in position 31) of the shift
instruction. We did not find any strong reason for implementing a rotate fcature and, given
the overhead for wiring complexity, decided against it.

The Mask and Merge unit can extract any number of bits from one operand and place or
merge it into any position of the other operand. This is a powerful feature for bit manipu-
lation. This opcration uses the shifter unit whilc the mask is being generated. Thercefore, it
is possible to accomplish the operation in a single 20 nS cycle.

The Leading Zero Count is taken at the output of the ALU, and the result is placed into the
staging register or written back into the register filc.

The Link Register is used to save the return address after the Branch and Link instruction
is executed.

The Loop Count Register is used to store the loop count during the execution of a loop ter-
minated with the Branch on Condition instruction, where the exiting condition can be a
predetermined number of iterations or the spccific condition - whichever occurs first.

Between the MCU and fixed-point units, there are three staging register. Two arc for data
to and from the MCU and onc is for the address generated by the fixed-point unit. The op-
eration of these registers is described in the instruction unit section.

Floating-Point Unit - FPU

The Floating-Point unit operates on a 60 nS cycle - three 20 nS clocks (Fig.3.). The length
of the operand mantissa and exponent are consistent with the IEEE-754 standard’s single
and double precision formats. However, it does not comply with all modes of operation
prescribed by the standard, and is therefore not compatible. In addition to floating-point
numbers, it operates on 32 and 64 bit integers.

It contains a 32 by 32 bit hardware multiplicr, and a 64 bit floating-point addcr for the
mantissa. The exponent circuitry in both the multiplier and the adder are 12 bits wide. The

ADDRESS to MCU from MCU

A
24 * 3 2
ADD.REG S_RER \, DATA

-4
from FLP [32,’
[~]
32y MUX
=
<T
l v ¥
CONSTANTS 3?’;'5:2
12l {32 RA R8
to FLP s
=
L)
E > v oy 3y py

<

A.RE_G_r a_R_E_g_r 3
3

[=
5 & /"~
PS >4 "}5" Link Reg
SHIFTER ALU L
57> 5, MERGE oop Cnt

32t 32 |
3%!

32,

LD ZERGC.
COUNT

Figure 2. Fixed Point Unit

size of the multiplier is determined by the numbcr of availablc gates and the chip arca. It is
the multiplicr that determines the basic cycle of the floating-point unit.

The register file contains 32 registers of 32 bits. It has two 32 bit read ports and one 64 bit
write port, made as a combination of two 32 bit write ports. In this way it is possible to write
both 32 and 64 bit quantities into the register file. Single precision operands arc read si-
multancously from the register file and fcd into the multiplier or upper portion of the 64-bit
staging registers of the floating-point adder. The double precision operands are rcad as a
register pair, one at the time, and stored into the staging registers of the floating-point adder.
Reading of the register file is accomplished on 20 nS boundarics.

There is a path between the floating-point multiplier and floating-point adder, so the product
may bc fed directly to the floating-point adder. This Multiply-Add operation is pipelined so
that both units (adder and multiplier) are executing an instruction in a 60 nS cycle. On some
problems likc single-precision matrix multiplication the processor can achieve a 33 MFLOPS
(mega-flops) pcak. The sustained operation rate depends on the code, and it typically can
be anywhere from 10 to 24 MFLOPS for scicntific applications.

to MCU

32
[re_32] [_reG 64 |
s4y 64 64/ 64/
W
NULT MEM ACC FADD
Register Flle
32 X 32
{16 X 64)
Formating &
4 y
3% 3% Rounding
3zt 32y 76y 64y 64y 76y
REG REG MPYREG REG FAD
Muitiplier
cat 1z FLP_Adder
32 X 32 64
o y 54
54/ ‘!
764
12/ 1
{_ Exp | [AcuMwATOR |
124 6af

Figure 3. Floating Point Unit

Before the result is written into the register file, it is passed through the Formatting and
Rounding Unit which will perform a rounding operation as prescribed by the standard. It
will format the operand into a single or double word, depending on the type of the operand
to be written into the register file. The Formatting Unit will signal an exception, if onc oc-
curs.

Floating-Point Adder

Th. Floating Point Adder is shown on Fig. 4. Due to the pre-alignment of the operands and
post-normalization of the result, including the adjustment of the exponents, achieving 60 nS
operation is not easy.

10

from MULT from REG

[1

64) 764 64y 76y
76§
581__.[R_a j Se1_r R_
Except.
124 12y
12* 12}/ 64 f 64
\ Mei]L——— E}ﬁgﬁ — EXCHANGE
64 ¢
12¢ 64y y
| Shift & Insert |

64y

\ —
OP_CODE—#— Oper \‘ ADD/SUB ///

64/

STATUS
I_EXC 5ub Zero Detect |

[-———————4. 64//
SHIFT |

Except

~

12/ 64/
v A4
EXP FRACT

Figure 4. Floating Point Adder

The Adder (Subtractor) is implemented as a combination of a conditional-sum and variablc
optimal length carry-skip scheme [13]. By combining a sophisticated scheme and a design
optimized for speed, a 64-bit addition is performed in 15.9 nS nominal time.

Floating-Point Multiplier

The Floating-Point Multiplicr is shown ir: Fig. 5. Its main components arc an intcger multi-
plier, an exponent adder and a normalizer used for post-normalization of a product. When
operating in the integer mode the exponent unit is ignored. The product is 64-bits long and
it is fed directly to the floating-point adder as one opcrand. The inputs to the multiplier are
staged in a combination of first-stage L1 and second-stage L2 and L3 latches, so that the
next set of operands is ready in L1, while the multiplication is in progress on the outputs of
either L2 or L3, selected by the multiplexer.

The multiplier is optimized for speed by a careful mixture of fast and standard gates. Booth’s
encoding is applied in order to minimize the number of partial-product terms, which are re-
duced to two operands by the network of 3-2 counters (implemented as full adder cells).
The final addition of 64-bits takes 16.1 nS nominal. The placement of the cells is critical in
order to achieve a compact and fast implementation. The result of the multiplier is an opcr-
and of a 64-bit adder which facilitates multiply-add operation. By keeping the product
64-bits long, we introduced extra precision, which allows us several passcs through a
multiply-add operation without significant loss of precision.

Memory Control Unit - MCU

The processor’s addressing capability is a maximum of 1 MWord (32-bit words) in 20 nS
access time.

Memory access is requested by four sources. These are, in pr'iority order, the channel unit,
the floating-point unit, the fixed-point unit, and the instruction unit.

The channel unit and the instruction unit issue requests to transfer blocks of data up to 32
words long. These words must be delivered in order. The requests include the starting mem-
ory address and the length of the block.

The floating-point unit and the fixed-point unit rcquest transfers of a single memory word
at a time. The advantage of doing it this way is that these requests may be fulfilled out of
order, though they need to be tagged for such purposes. Since the destination of these re-
quests is one of the 32 registers within either the floating-point or fixed-point unit, the cor-
responding register number is used as the tag. Thus, the request includes the memory addrcess
and the register number.

The Memory Controller operates in one of two modcs, supporting the usc of either dynamic
or static memory devices. In either mode, the sources of memory requests compcte for ac-
cess to the MCU. Their conflicts are resolved using the priorities indicated before. The unit
with the highest priority is enabled to present its request to the MCU. Thesc modes are:

Use of Dynamic Memory

In this mode, the memory system is 4-way interleaved, with 256 KWords of dynamic memory
per bank, using static-column (page-moc.) devices. 1 Mbit dynamic memory devices are
uscd, organized as 512 rows of 512 by 4 bits. These are static-column RAM dcevices, with
80 nS access time to locations within the same row. Each mcmory bank has its own inde-
pendent address bus. Each of these busses includes 9 address lines for multiplexed Row

12

The Adder (Subtractor) is implemented as a combination of a conditional-sum and variablc
optimal length carry-skip scheme [13]. By combining a sophisticated scheme and a design
optimized for speed, a 64-bit addition is performed in 15.9 nS nominal time.

Floating-Point Multiplier

The Floating-Point Multiplicr is shown ir: Fig. 5. Its main components arc an intcger multi-
plier, an exponent adder and a normalizer used for post-normalization of a product. When
operating in the integer mode the exponent unit is ignored. The product is 64-bits long and
it is fed directly to the floating-point adder as one opcrand. The inputs to the multiplier are
staged in a combination of first-stage L1 and second-stage L2 and L3 latches, so that the
next set of operands is ready in L1, while the multiplication is in progress on the outputs of
either L2 or L3, selected by the multiplexer.

The multiplier is optimized for speed by a careful mixture of fast and standard gates. Booth’s
encoding is applied in order to minimize the number of partial-product terms, which are re-
duced to two operands by the network of 3-2 counters (implemented as full adder cells).
The final addition of 64-bits takes 16.1 nS nominal. The placement of the cells is critical in
order to achieve a compact and fast implementation. The result of the multiplier is an opcr-
and of a 64-bit adder which facilitates multiply-add operation. By keeping the product
64-bits long, we introduced extra precision, which allows us several passcs through a
multiply-add operation without significant loss of precision.

Memory Control Unit - MCU

The processor’s addressing capability is a maximum of 1 MWord (32-bit words) in 20 nS
access time.

Memory access is requested by four sources. These are, in pr'iority order, the channel unit,
the floating-point unit, the fixed-point unit, and the instruction unit.

The channel unit and the instruction unit issue requests to transfer blocks of data up to 32
words long. These words must be delivered in order. The requests include the starting mem-
ory address and the length of the block.

The floating-point unit and the fixed-point unit rcquest transfers of a single memory word
at a time. The advantage of doing it this way is that these requests may be fulfilled out of
order, though they need to be tagged for such purposes. Since the destination of these re-
quests is one of the 32 registers within either the floating-point or fixed-point unit, the cor-
responding register number is used as the tag. Thus, the request includes the memory addrcess
and the register number.

The Memory Controller operates in one of two modcs, supporting the usc of either dynamic
or static memory devices. In either mode, the sources of memory requests compcte for ac-
cess to the MCU. Their conflicts are resolved using the priorities indicated before. The unit
with the highest priority is enabled to present its request to the MCU. Thesc modes are:

Use of Dynamic Memory

In this mode, the memory system is 4-way interleaved, with 256 KWords of dynamic memory
per bank, using static-column (page-moc.) devices. 1 Mbit dynamic memory devices are
uscd, organized as 512 rows of 512 by 4 bits. These are static-column RAM dcevices, with
80 nS access time to locations within the same row. Each mcmory bank has its own inde-
pendent address bus. Each of these busses includes 9 address lines for multiplexed Row

12

In this mode, memory is trcated as a single memory system with the 32-bit address bus. It
is designed for 20 nS access time static memory devices. The 32 address lincs arc obtaincd
by grouping the four sets of 9 address lines described above into a single bus (with 4 unuscd
lines). In this mode, the address received from the requester is placed in the proper output
pins. No further processing of the request is performed.

An additional operating mode with scparate address spaces for instructions and data can also
be supported, but rcquires modifications of the MCU logic.

The Memory Controller performs the following functions:

data transfers
4-way interlcaved addressing

selection of highest priority request and management of request prioritics

support for the static-column mode allowing fast access to the locations within the same
row

e gencration of timing and memory refresh signals
e single error correction, double error detection

The memory controller consists of two subsystems:

® A subsystem to accept and process requests. It includes the logic to select requests ac-
cording to their prioritics, the logic to process those requests, the qucues and the logic
to implement the dynamic memory refresh schedule.

@ A subsystem to access the memory devices. It includes the logic to generate the control
signals to the memory devices, the error corrcction logic, and the required data inter-
faces.

Single crror correction and double error detection are accomplished using a modified
Hamming code. Scven parity bits are computed from the 32 bits of data, and stored together
with it.

Implementation consists of two internally connccted data busscs to reduce the timing re-
quirements imposcd by the 50 Mhz clock.

Instruction Unit - 1U

The Instruction Unit, Fig. 6., embodies the principles of decoupled architecture [5]. It re-
ceives the instructions from the MCU, four at a time, taking advantage of the fact that they
are likcly to be on the same page, since page crossing penaltics are costly. They are stored
in the Instruction Buffer (IB) with a maximal capacity of 16 instructions. The Instruction
Buffer is organized as a 16 entry, 2 read port, 1 write port 32-bit wide register file. Two read
ports are used to permit two instructions to be decoded at the same time, and if no conflict
is found, dispatched and cxccuted.

The fixed and floating-point condition status bits are passed to the IU, which performs
branch condition cvaluation and generates target addresses for branches.

These two instructions can be any combination of fixed and floating point instructions, in-
cluding fixed (floating) loads and stores. The instructions arc rcceived by the pre-decode
registers PDS1 and PDS2 and partial decoding is performed in the Pre Decode and Control

14

Memory Controler

FXP Queues FLP Queues
o] L5 L] LsT]
 E— ! L_____,r '
N4 \4
FXP Data FLLP Data
W
[1761 | 1782 |
Instruction
Buffer WTA wTB

Branch Target Table

RA RB RTA RTB

]

FXP Dummy FLP Dummy
Instruct. l PDS1 I LPDSZ l Instruct |

____I I.______
,/ \'_/ Empty Pre-Decode

Empty Branch
I_Queue I_Queue and Control
FXP FLP
[v.Code] [1aR |
[Fx-Dec.| [FL-Dec. | fr;;XP>»__J
FLP>

Figure 6. Instruction Unit

Unit (PDC). The PDC unit determines if the instruction is Load, Store or Branch and if it
requires synchronization between fixed and floating point units.

Normally, Load and Store (fixed and floating) require the units to be synchronized to assurc
that one of the processors is not using "'old" data, i.c. data that would be otherwisc over-
written had the processors been in synch. Given the frequency of Load and Store in-
structions, about 30% of the instruction mix [1], it would practically be required that the
processors run in a lockstep most of the time. Other solution would be to usc rather complex

hardware, which would keep track of the instrcution dependencies and correct sequencing
of dependent instructions [7].

In many high-end commercial procesors (IBM 360/91, 3033, ctc.) this problem is solved
by using address comparison logic to compare the address of a load with addresses of storcs
from the floating point unit which have not been performed. This address comparison logic
is uscd infrequently and consumes valuable area on a chip [7],[8].

Here our decision has been to allow the processors not to synchronize on Load and Store
but not to allow them to share data through the memory. The only exchange of data betwcen
fixed and floating point processors can happen using the transfer instruction (TFFL, TFLF)
passing the data between the general purpose register files of the corresponding units. In
addition we introduce a SYNCH instruction whose sole purpose is to provide synchroniza-
tion between the units.

We feel this is a reasonable approach given:
e the gain in paraliclism having the units running concurrently

e that the attcmpt to use each others data is infrcquent

Having the synchronization on conditional branch and transfer instructions only, the units
are made less dependent and they are allowed to operate with higher degree of parallelism.

Floating Point Load
When a floating point load is detected at the pre-decode stage the following occurs:

® The load instruction is issucd to the fixed point unit for address generation.

e A dummy Load (RECEIVE) instruction is issucd to the floating point instruction qucue
(FLP-1Q), containing the destination register.

e Fixed point unit issues the load request to the memory controller by placing the request
into the aforementioned memory request registers. The data from the requested mem-
ory location is then placed on the data queuc inside the memory control unit.

e The RECEIVE instruction, when exccuted by the floating point unit, takes the data
from the data qucue and writes the data into the destination register.

Given that there arc no out of sequence instructions, data need not to be tagged.

Floating point stores are performed in a similar way issuing dummy SEND instruction which
place data on the FLP Storc Data Queuc. The destination address is generated by the FXP
unit and tagged to the data in the store queue. Data can not be written to the memory by the
MCU until both data and address are valid.

Branching

Fetching of instructions from the IB is suspended when the Branch instruction is encountered
awaiting the generation of the Branch Target Address (BTA). In the case of Branch and
Execute the instruction following the Branch is dispatched to the corresponding unit. The
Branch Target Table (BTT) is associatively searched to detcrmine if the branch target in-
struction is already in BTT. If a match is found, two instructions are placed in the pre-decode
registers PDS1 and PDS2 with the target instruction in PDS1. The targcet instruction might
be in the IB and if it is found in IB, fetching of instructions continucs from IB. Mechanism
for matching and keeping circular pointers are implemented to support this feature.

The BTT contains four target instructions, cach followed by up to thrce subscquent in-
structions. The pointer to the BT in the BTT is 20-bit BTA which has valid bit VF associatcd

16

with it. The BTT is organizcd as a two-port read two-port write register file containing 16
instructions. It is possible to simultancously rcad or writc two instructions at a time in adja-
cent locations.

If the BTl is not found in IB or BTT, than thc following occurs:
e The IB is clecared by resetting pointers.

e The BTA is gencrated and a request to fetch a block of instructions from that location
is issued to the MCU.

e The Instructions are written into IB and passcd through into the pre-decode stage.

e The BTI and the subsequent three instructions are pre-decoded and passed from the
pre-decode stage into IQ of FXP and FLP units. They are also writen into the BTT.
If another Branch is not encountered at the end of this process, the valid bit VF is sct
to 1.

When BTI is found in BTT, IU issues request to the MCU to fetch a block of four in-
structions starting with the memory location BTA+4, only if VF=1. A conditional branch
is always treated as if it will not be taken (instructions following it are brought to IB).

The partially decoded instructions arc forwarded to the 1Qs of FPU and FXU for further
decode and execution. Since the TU takes part in instruction handling and exccution, the
control units of FXU and FPU are made simpler.

1/0 Unit

The I/0 unit operates in a byte-scrial mode between the memory and the 1/0 device. It is
a 50 MHz byte-serial packct consisting of a header with the information of the packet length
(in the number of bytes) and the destination. The last byte is a CRC code. When the packet
is sent to the processor it interrupts the opcration and it is transferred to the memory having
the highest priority given by the MCU. The outgoing transfer is initiated by the MCU, which
supplies the starting and ending address in the memory and the destination address.

IMPLEMENTATION ISSUES

Currently the largest available ASIC chip allows packing of up to 100,000 gates [15]. This
number is highly dependent on the rcgularity of the structure, the amount of imbcdded
memory arrays, and the size and number of busses implemented on the chip. There are two
versions of logic cells available for the designer: a fast and slow version. The fast version
consumes more power and has higher gate count (area) than the slow version and should be
uscd very judiciously. Therefore, the fast cells are used only in the time-critical paths, where
the speed-up is absolutely necessary in order to meet the 20nS cycle time. For the rest of the
logic, we usc the standard "slow" version.

We identified the cells having a iow gate count and short propagation time, and used them
extensively throughout the design. One of them is a multiplexor cell, which duc to its pass-
transistor implementation yields very low gatc count and propagation delay. This turns out
to be advantagcous, since the multiplexor is a very common and versatile building block in
any computer. In addition, we attempted to identify and create new building blocks.

The fixed-point unit ALU and floating-point adder arc built using a variable-length carry
propagation scheme [13]. The advantage of this scheme for VLSI implementation is that the

17

fan-in and fan-outs are relatively small (2-3). The wiring overhead is minimized since the
carry-bypass circuitry is minimal and only onc wire is uscd for bypassing the carry signal.
This scheme in a small and regular structure with a relatively small gate count. This scheme
is actually comparable in speed with the Carry-Lookahcad schemc as shown by simulation
[14]. Yet, it implements itself in a simall and regular structure.

The fixed point ALU of 32 bits was implemented with 513 gatcs resulting in 16.7 nS nominal
time for the critical path.

All the modules are designed in a strictly hierarchical fashion, always attempting to identify
and use common building blocks. This makes repetition possible and reduces the design time
and effort. Maintaining hierarchy is of outmost importance in order to manage complexity

and to achieve short design time.

CONCLUSION

The basic principles of RISC architecture are applicd to design a processor in fast-
turnaround ASIC technology. The architecture is a trade-off between the features desirable
in order to make the processor attractive for a widc range of computational problems, and
the possibilities of available technology. Simplicity is important and often overlooked. The
benefit of a shorter design cycle offers the ability to reach the market place with compctitive
performance in a timely fashion.

ACKNOWLEDGMENT

Monty Denneau instigated this work and provided many ideas. Jaime Moreno contributed
to the memory control unit.

REFERENCES

[1] George Radin, The 801 Minicomputer, IBM T.J.Watson Research Report RC 9125, No-
vember 11, 1981.

[2]].L.Hennessy, VLSI Processor Architecture , TEEE Transaction on Computers, Vol. C-33,
No.12, December 1934.

[3] D.A. Patterson, C.H. Scquin, RISC I: A Reduced Instruction Set VLSI Computer , Pro-
ceedings of 8th Annual Symposium on Computer Architecture, Minneapolis, Minnesota,

May 1981.

[4] C.Rowen et al. RISC VLSI Desizn for System-Level Performance VLSI System Design,
March 1984.

[5] J.E.Smith et al, 4 Simulation Study of Decoupled Architecture Compuiers. IEEE-TC, Vol.
C-35, No. 8., August 1986.

18

[6] V.G.Oklobdzija, Architecture for a Single-Chip ASIC Processor with Integrated Floating
Point Unit, 21st Hawaii International Conference on System Sciences, Kailua-Kona, Hawaii,
January 5-8, 1988.

[7]1 R.M.Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Unirs, IBM
Journal of Rescarch and Development, January 1967.

[8] D.W.Anderson at al, The IBM System /360 Model 91: Machine Philosophy and
Instruction-Handling, IBM Journal of Rescarch and Development, January 1967.

[9] IBM-RT Personal Computer Technology, Publication No. SA23-1057, IBM Corporation
1986.

[10] AMD 2900 User’s Manual, Advanced Micro Devices 1987.

[11] CLIPPER, 32-bit Microprocessor, User’s Ma'nual, Fairchild 1987.

[12] How Weitek Chips Run FORTRAN at 25 Megaflops , Electronics, October 30, 1986.
[13] V.G.Oklobdzija, E.R.Barnes, Some Optimal Schenes for ALU Implementation in VLSI
Technology , Proceedings of 7th Symposium on Computer Arithmetic, Junc 4-6, 1985, Uni-
versity of Illinois, Urbana, Illinois.

[14] V.G.Oklobdzija, E.R.Barncs, Simple and Efficient Scheme for VLSI Implementation of
Addition, Submitted to the special issue of Journal of Parallel Processing and Distributed
Computing, April 1988.

[15] LSI Packs 100K Gates On Chip, Electronics Engineering Times, October 26, 1987.

[16] LCA 100000 Compacted Array Series , LSI Logic Corp., June, 1986.

19

