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ABSTRACT

An architecture for a single-chip VLSI implementation of a
Wigner distribution signal processor is presented. ASIC imple-
mentation in CMOS technology is considered with complexity
of 65,000 gates, achieving a maximum throughput of 12K 16-bit
samples per second. The architecture takes advantage of the
high level of integration and low power consumption achievable
with CMOS technology thus eliminating clock skew and off-chip
delays associated with chip-crossing penalties. By integrating
the Wigner processor on the single chip, the implementation is
made practical and attractive for processing acoustic signals.

INTRODUCTION

The Wigner distribution (WD) has recently received consid-
erable attention as a tool for time-frequency signal analysis.
It is a 2-D real function that, loosely speaking, displays the
time evolution of the frequency content of the signal. This
makes it particularly useful for analysis and characterization
of non-stationary and transient signals. In particular, the most
recent research results indicate its usefulness in both active
and passive underwater acoustic surveillance, identification
of target signatures, speech analysis and recognition.

Several authors have addressed the issue of fast hardware im-
plementations of the WD [1-4]. They came up with architec-
tures suitable for real-time computation of the WD of signals
with sampling rates up to a few Kilohertz. Early results [1,2]
represented direct implementations of the defining equation
in hardware. More recently, a microprogrammed implemen-
tation based on standard bipolar multiplier-accumulator chips
has been proposed [3]. A systolic architecture based on the
single modulus quadratic residue number representation has
also been advanced lately [4]. However, all of these imple-
mentations use many chips or even several boards, resulting
in considerable size and power dissipation, yet not providing
a corresponding throughput increase.

Rapid advancements in VLSI technology make it possible to
integrate more functionality on a single chip and maintain a
relatively high processing speed, taking advantage of the
proximity of the components and of the elimination of chip-
crossing and clock skew penalties.

In this paper we undertook a study of VLSI implementation
of Wigner distribution signal processor on a single chip. The
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estimate of the complexity in terms of the number of gates and
propagation delays are based on data for currently available
CMOS technology. In the evaluation of the performance and
integration level we used data available for a fast turn-around
ASIC technology which allows for rapid prototyping and im-
plementation. The study shows that the throughput achieva-
ble with this technology is substantial and satisfactory for
real-time underwater acoustic and speech signal processing.
Using custom design methodology, further increase in the
level of integration and throughput is possible. However,
given the fast pace of advancements in technology, we believe
that the advantage of rapid prototyping and fast turn-around
outweighs the potential gains achievable with custom design.

Our estimates show that a single-chip implementation in
CMOS-ASIC technology is quite feasible. The performance
estimates obtained with a simulation of critical components
and paths shows that a significant real time throughput rate is
achievable.

DISCRETE WIGNER DISTRIBUTION

In most applications dealing with band-pass signals it is ad-
vantageous to use the WD of the corresponding complex an-
alytic signal. In this way, the redundant interfering
cross-terms that exist around zero frequency in the WD of the
real band-pass signal are eliminated. The imaginary part of
the analytic signal is obtained through the Hilbert transfor-
mation of its real part which is equal to the original signal.
The conventional way of computing the WD of the real signal
requires oversampling (interpolation) of the signal by the
factor of two. Although the computation of the WD of the
analytic signal does not require oversampling, the total num-
ber of real samples representing the signal of interest (real vs.
analytic) is the same in both cases. Since the WD of the ana-
lytic signal contains less redundancy, it is the representation
of choice when dealing with band-pass signals, such as
underwater acoustic and speech signals. Therefore, the
127-point FIR Hilbert transformer was included on the same
chip with the WD processor.

Computation of the WD involves generation of the auto-
product of the signal with its displaced and time reversed ver-
sion, followed by the Fourier transformation. In our
implementation, computation is optimized by taking advan-
tage of the symmetry properties of the signal auto-product.



By suitably combining the two successive auto-products, it is
possible to generate two successive time slices of the WD in
one step as the real and imaginary part of the Fourier trans-
form of such combined auto-product. Each of these proper-
ties effectively doubles the throughput of the computation;
resulting in the quadrupling of the performance, relative to the
direct implementation.

The discrete-time WD (DTWD) is defined as [5] :

W(n,0) =2 Y, z(n + K)Z(n — k) exp( —j20K) (1)

k=—c

where overbar indicates complex conjugation. In the sequel

we will take z(r) = s(n) + Js () where 5 (n) is the Hilbert
transform of s(n).

In practice, only a finite amount of data can be processed and
therefore windowing has to be employed. The WD of the
windowed data then becomes:

M
Wn, 0) =2 ¥ z(n + k)Z(n — Kyw(k) exp( —jok) (2)
M

We will choose the rectangular window
w(k) =1, —M < k < M, as is usually done in practice. A
different choice would result in only slight modification of the
design that follows. The WD W(n, 8) can now be evaluated
as a finite number of points 8 = im, m ¢ [0O,N — 1] that
cover its basic period 8 € [0, 7)

M
Winm) = 2k=z—Mz(n + K)Z(n — k) exp( —jZTW mk) (3)

& 2
=2 rk) exp( —j = mk
k=E—M ) exp( —j i )

where r (k) = x, +y,(k) =z(n + kK)z(n — k), - M <k < M.
Usually, N = 2M+1.

The auto-product r,(k) has a couple of symmetry properties
that can be exploited in order to reduce the computation by a
factor of 4. First,

Rk =i~k , -M<k<M 5)

Only the real part of the DFT of such a sequence will be
non-zero. On the other hand, the DFT of the combination
of two successive sequences

R, (k) = r,(k) +jr 1 (B) = x,(k) = yo 1 (R) + jLx, 1K) + y, (k) ]

(6)

will have:
Re{DFT{ R, (k) ]} = DFT r (k)] = W(nm) (7

Im{DFTLR,(k)1} = DFT{r,, (k)] = W(n + Lm) (8)

Therefore, a single DFT computation on R, (k) will produce
two slices of the DTWD : W(n,m) and W(n+1,m). This re-

duces the number of DFT computations by 2.
Another symmetry property:

R (—k) = 1y (k) + jr,1(k) = x,(k) + y,.1(k) + jx,,1(k) = y, (k)]

9)

implies that x,(k), y,(k), y,.1(k), x,,,(k) should be evaluated
only for non-negative k, 0 < k < M. Therefore the number
of multiplications required to compute R,(k) can be halved
by exploiting this property :

M
Wnm) + W+ 1m) =2 >, R, (k) exp( -j%:;— mk)
k=—M

27

M
= 2R,(0) + 22 R,(K) exp( —j =

mk) + R,( —k) exp(jz—qT mk)
k=1 N

M
= {2x,00) + 4§[xn(k) cos( 2—1\’; mk) + y (k) sin( —213— mk) 13

M
. 2
+125%,1(0) + 43 [5,1(k) G05( 2 11k) + 331 (8) sin( S mk)

k=1

(10)

As a result we obtain the following algorithm (ignoring the
scaling constant 4):

Given s(i) ,n—M<i<n+M+1

Repeat:

31
./\‘\(n) = zh(k)[s(n + 63 — 2k) —s(n — 63 + 2k)};,  (11)
k=0

31
S+ 1)y = D h(R)ls(n + 64 — 2K) — s(n — 62 + 26)]; (12)

k=0
For m=0,N-1
Wam) == L2 + 5], a3
Wn + 1,m) =-;—[s2(n+ 1)+ 5%+ D], (14)
For k=1M
%, (k) = s(n + K)s(n — k) + 5 (n + K)S (n — K, (15)
(k) = £ (n + Bs(n — k) — s(n + K)S (n — k); (16)

%p 10 =5+ 145 +1—K) +5(n+ 1+ K5+ 1= k),

an

)’n+l(k)=:v\(n+1+k)x(n+1—k)—s(n+1+k)§\(n+l—k);

(18)
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For m=0,N-1

W(n,m) = W(nm) + x,(k) cos(z—;mk) + y, (k) sin( lNE—mk),
(19)

W(n + 1,m) =

.2
W+ 1m) + %31 (K) €05( 2T k) + 3,4 (8) sin( - mk);

(20)

n=n+2;

until DONE.

ARCHITECTURE AND PROPOSED IMPLEMENTATION

The proposed architecture for computing WD trades-off the
speed of FFT algorithms for the hardware simplicity and reg-
ularity of the direct DFT computation that allows re-use of the
same simple hardware at different stages of computation. As
a result, the processor fits on a single high-speed VLSI ASIC
chip and achieves real-time performance with realistic data
block length N=127.

The processor consists of (Fig.1.):

e two register files of 128, 16-bit registers organized as
two-port-read, one-port-write ( GRA, GRB ). GRA
contains real parts of data while GRB is used for storing
imaginary parts.

e one look-ahead buffer of 64 16-bit registers (LAB).

® two read-only files containing 128, 16-bit constants. The

register CRC contains 128 element table of cosine func-
tion and CRS contains sine function.

e read-only register file CRH contains table of 32 non-zero
FIR Hilbert transformer coefficients, 16-bit wide.

o four 16 by 16 bit integer multipliers: M1,M2,M3 M4.

® two 16-bit adder/subtracters: AS1, AS2.

® The outputs of the AS1 and AS2 are accumulated in

adders AD1 and AD2 and read-write register files GR1
and GR2.

At the end of the computational cycle GR1 and GR2 contain
two slices of the WD taken at two consecutive times.

This organization of data storage facilitates the time multi-
plexing of the arithmetic unit since the existing data path is
used and there is no need for extra bussing. Two extended
accumulators are used to accumulate the results of summation
and they are organized as two-port register files of 128 16-bit
registers.

Operation

The first register file GRA is filled up with 128 signal samples.
Look-ahead buffer (LAB) contains the next 64 samples. This
LAB is updated at the signal sampling rate f. Both LAB and
GRA are used as circular buffers: i.e., the "oldest" sample in
LAB is overwritten by the incoming sample, and the "oldest"
sample in GRA is overwritten by the "oldest" sample in LAB.

Phase-1: Hilbert transformation
127 point FIR filtering is performed according to the
equations (11) and (12).

Signal samples s(n+63-2k) are taken from LAB and
S(n-63+42k) are taken from the register file port B, passed
through the multiplexers MX1 and MX2, multipliers M4 and

16,

Fig.

1.
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M2 ( being multiplied by 1) and subtracted in AS2.

The result is temporarily stored in SR4. Then the difference
( content of SR4 ) is multiplied by the corresponding filter
coefficient h(k), t aken from CRH, using multiplier M3 and
the result accumulated in SR1.

These two steps take one cycle each. They are repeated for
each k ( k£ € [0,31] ) to produce one sample of the Hilbert
transformation. At the end, the result in SR1 is stored in the
corresponding location of the circular buffer GRB(n). These

A .
steps are then repeated to compute s(n + 1) according to

equation (12). Phase-1 takes 64 cycles per input sample, 128
total. At the end of this phase, GRA and GRB contain real
and imaginary part of the analytic signal corresponding to the
real input.

Phase-2

Initialization of W(n,m) and W(n+1,m) is performed in this
phase according to eqgs. (13),(14). This process takes 2M
cycles.

Phase-3

In this phase two successive complex auto-products (15),(16)
and (17),(18) are computed.

The results x, and y, are saved temporarily in SR2 and SR3
while x,,, and y,,, are stored in SR1 and SR4. This is done in

two cycles.

Phase-4

In Phase-4 x,(k) , y,(k), x,,,(k) , y,..(k) are kept in SR1 - SR4
and used to compute partial sums (19) and (20). The com-
putation takes N cycles.

The Phase-3 and Phase-4 are repeated M times for each value
of k. The time spent in Phases 3 and 4 is (2+N)M clock cy-
cles. The total computation per pair of input data samples
takes (2+N)M+128+2M = M(2M+5)+128= 2M? cycles.
The number of cycles per one sample is then M? = N?/4 .

This implies that the clock rate must be f,, > % £

For each new pair of samples the process is restarted at
Phase-1.

Our objective is to achieve real time performance with 12KHz
sampling rate in a single chip implementation. With this ar-
chitecture the maximum sampling rate for real time operation
is limited to f, = 4f.,/N?, where f, is the processor clock rate
and N is the data block length. Maximal block length of 127
data points each represented with 16-bits is specified given the
current technology constraints. By pipelining K such
processors the throughput can be increased by K.

The implementation takes advantage of different rates at
which signals need to be processed at different stages of
computation. Therefore by time multiplexing an arithmetic
unit designed to perform fast complex multiplication it is
possible to save on hardware without significantly degrading
the processor throughput. The arithmetic unit is utilized with
such a flexibility that the Hilbert transformation, complex
signal samples multiplication and multiplication with the
complex exponential constants in the kernel of the Fourier
transformation are all performed with the same unit. The
arithmetic unit is designed for maximum speed since it deter-
mines the minimum clock cycle and therefore a maximum
achievable throughput. It consists of four 16 bit multipliers
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and two 32 bit adder-subtracters.

Hardware Complexity

For this implementation a largest currently available ASIC
chip is necessary [61.

In this case we need approximately 65,000 gates which is
currently available [6]. Estimated use of these gates is: 48,000
in arrays, 12,000 in the data path and 5,000 in the control
logic. The size of the chip can be further reduced by using
custom designed register files placed inside the ASIC chip.

The chip requires a relatively low pin-count 64-pin package
which reduces the cost of manufacturing. With the clock cycle
of 20nS, 12KHz throughput is achievable with the currently
available CMOS technology. By pipelining of P such chips,
thorughput can be increased by P.

It is possible to place this implementation on a smaller ASIC
chip, like LCA10129 [7],{8], in which case the data block size
needs to be reduced to by a factor C and loss in frequency
domain resolution is to be expected. This, on the other hand,

4
allows increase in the sampling frequency f, < % by C?

CONCLUSION

We have shown that it is possible to integrate the WD
processor on a single chip without sacrificing resolution or
performance. The algorithm for computing WD is tailored for
time-sharing of relatively simple and fast hardware modules.
This makes implementation of WD practical and attractive for
acoustic signal processing.
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