ARCHITECTURE FOR SINGLE-CHIP ASIC PROCESSOR
WITH INTEGRATED FLOATING POINT UNIT

Vojin G. Oklobdzija

IBM T. J. Watson Research Center,
P.O.Box 218
Yorktown Heights, NY 10598
(914) 945-2607

ABSTRACT

An architecture for a single-chip processor with emphasis on
ASIC implementation is presented. The basic principles of
RISC architecture are applied to the processor and in addition
fast floating-point and serial 1/O units are included on the
chip. The limitation of the processor’s complexity is a 50,000
gate capacity of the chip, and 600 pS per gate delay. These
are the characteristics of vendor CMOS-ASIC technology
currently available. The architecture is a trade-off between
the features desirable in order to make the processor attrac-
tive for a wide range of computational problems, and the pos-
sibilities of the available technology. The architecture takes
advantage of a high level of integration and a low power con-
sumption which is achievable with CMOS technology. It also
benefits from the elimination of clock skews and off-chip de-
lay penalties associated with comparable implementation using
several chips.

INTRODUCTION

One of the principles of RISC architecture (RISC: Reduced
Instruction Set Computer) is to trade complexity for the
speed of execution [1],[2]. The speed is achieved by de-
signing a simpler and smaller instruction set which executes
on a simpler hardware. In turn the simplicity of hardware
allows for a faster instruction execution. Performance
achieved by RISC processors is comparable to the per-
formance of medium size machines [3],{4]. This is true even
after reducing the performance figure of a RISC machine
by the factor of 2-3 in order to have a meaningful compar-
ison of "less powerful instructions” of a RISC to "more
powerful instructions" of a CISC machine (CISC: Com-
plex Instruction Set Computer), or running a set of stand-
ard benchmark programs [5].

However, a very important and often overlooked benefit of
simplicity is a shorter design cycle which offers the ability
to reach the market place with a competitive performance
in time.

THO0209-7/88/0000/0221$01.00 © 1988 IEEE

221

The machine with the complex instruction set takes longer
to design. Therefore, in order to be competitive with the
machine which takes shorter to design, and is implemented
in more recent and more competitive technology, it has to
be projected for a higher performance. Suppose it takes 2-3
years to design a RISC machine and 5-6 to design a CISC
machine than, given the rapid improvement in processor
performance each year, the CISC will have to be targeted
for almost twice the performance of RISC. This is an addi-
tional strain on a design team of a CISC machine.

Given the fact that each of the processors that has been on
the market since the beginning of the microelectronics rev-
olution of the late seventies has lived a relatively short life,
it is almost irrelevant if the ultimate performance for a given
architecture will or will not be achieved. The driving factor
seems to be the need to reach the market in the shortest
possible time, delivering a competitive performance for the
time frame of the processor’s lifetime.

The consequence of this line of thought is the choice of the
technology and design methodology which result in the
shortest turn-around time and competitive performance.
Therefore the use of Application Specific Integrated Circuit
Technology - ASIC seems to be a logical choice.

IMPLEMENTATION

Today there are many "silicon foundries' offering services
in design and processing of gate array type designs with ex-
tremely short turn-around times, which range from 2 to 10
weeks depending on the chip size (in terms of the number
of gates). Most of thumn are using CMOS technology with
competitive ground rules ranging from 1.5 microns and be-
low. They use different methods of placing gates or tran-
sistors on the chip, with the support of the sophisticated
tools for placement and wiring. This allows the design of
chips with several hundred thousands of transistors, which
translated into gates ranges from a couple of thousand gates
to a hundred thousand gates or more. Their internal speed
can be as fast as several hundred pico-seconds depending
on the loading condition and the amount of power dissi-
pation allowed by the gate. Using the rough figures of
12-15 levels of logic and 1 nS propagation delay per gate,

it is obvious that the performance achievable is not to be
underestimated. These chips are supported by high quality
packages, which allow several hundred I/0 pins and are
able to handle simultaneous switching on many output pins
at very high clock rates. The package is also capable of
dissipating the power generated by these fast and dense
chips, due partly to the use of low-power CMOS technology
and partly to the improvements made in the development
of high quality ceramic packages.

This processor has been architected for implementation on
a single ASIC chip containing up to 50,000 gates, and im-
bedded static memory arrays which are to be traded for the
available gates. The goal of the architecture is to achieve
high performance on both fixed-point and floating-point
operations, because its intended use is for intensive scien-
tific computation. The main issue here is how and where to
use the available gates in order to maximize the perform-
ance and flexibility. Also, due to the channelless architec-
ture of the ASIC chip, extensive bussing and wire crossing
are prohibited because they take chip space and decrease
the number of gates available.

The chip is broken up in to five 1)osely coupled units:
fixed-point, floating-point, instruction unit, memory con-
troller and I/O unit. (Fig.1.) Processor memory consists
of interleaved dynamic RAM where static column mode is
used to fetch data contained within the same page. Memory
can be two or four way interleaved, depending on the mode
selected, and supported by the memory control unit. With
the four-way interleaved memory in the static-column,
mode the memory is expected to deliver a word every 20nS.

cle, while it takes 3 cycles to execute basic floating-point
operation (add/subtract or multiply).

The floating-point processor is able to peak at 33 MFP
(mega flops) by executing two instructions (add and multi-
ply) in the same 60nS cycle, while the fixed-point should
achieve 50 MIPS (mega instructions per second).

The instruction unit fetches instructions and dispatches
them to the fixed and floating-point units. It contains an
instruction buffer (I-cache) and it is capable of executing
BRANCH instructions directly.

The 1/0 unit is byte-serial, operating at a 50 MHz rate. It
transfers data directly to the memory in a DMA fashion and
operates in a packet mode.

The memory controller directs the transfer of data and in-
structions to and from the memory, assigns priorities and
provides queuing. It is also responsible for generating re-
fresh and timing signals for the dynamic memory.

ARCHITECTURAL GOALS

The main drawback of RISC processors available today is
their relatively poor performance on floating-point compu-
tation. This is especially emphasized, because due to their
high performance they belong to the range of scientific work
stations where intensive floating-point computation is often
required. To remedy their deficiencies on the floating-point
performance, some of them resort to the use of commer-
cially available floating-point processors. This has several
disadvantages:

e First, the floating-point performance of many "off the

The processor cycle time is also set for 20nS where the shelf" floating-point units is relatively poor, and this

fixed-point unit is able to execute one instruction every cy- diminishes much of the high performance achieved by
Address Data Address

Memory
Control

2J
f 2

32y 3

R

Instructfon Unit

Service Port

Floating Point

Fig. 1. Processor Organization

Fixed Point

Channel Switch

222

the processor. This situation has somehow been
changed by the availability of the new generation
Weitek floating-point chip [6].

e Second, with a sufficient performance floating-point
unit, much of the performance is lost in the fixed-point
to floating-point communication, dispatching the in-
structions and transferring data back and forth, as well
as synchronizing the operation of fixed and floating-
point units. This situation is hard to remedy because
the two processors are not specifically designed to work
together. Such a combination is lacking a well con-
ceived communication protocol and supporting busses.

e Third, there are unavoidable off-chip crossing penalties.
Especially if the "off-the-shelf" floating-point unit
consists of more than one chip.

The main objective of this architecture is to provide an in-
tegrated fixed/floating-point unit with the communication
protocol built into the instruction set and control. In addi-
tion the two units should be of comparable speeds of exe-
cution in order to avoid necessary synchronization delays.

Therefore, the floating-point unit contains a fast hardware
multiplier and a floating—poiﬁt adder of the size of 64 bits.
The size of the multiplier is limited to 32 X 32 bits, due to
the constraint of the available gates. The 64-bit size of the
adder allows fast execution of double precision operations,
and also pipelining of the multiplication and addition oper-
ations, so that it is possible to have two operations concur-
rently executed in the multiplier and the adder unit.

The hardware multiplier is used for the division operation
by applying a multiplicative division algorithm (IBM
360/91) and using a table look-up for the first iteration.

Both the multiplier and adder are of a larger size than re-
quired by the IEEE-754 standard to which the operand
conform in their formats. The multiplier size is 32 X 32 bits
for the fractions, instead of 24 bits, and the adder size is 64
bits, instead of 52. This is done for two reasons. The first
is to use the multiplier for the integer multiplication and di-
vision, and the second to postpone rounding in the sequence
of iterative multiply-add operations, as will be explained
later.

The operands are passed between the fixed-point and
floating-point processors through the buffer stage registers,
under the control of the transfer instruction.

The fixed-point unit is used for the address computation for
the floating-point during the course of floating-point inten-
sive computation. It executes in a 20 nS cycle and is capable
of achieving a 50 MIPS peak. It contains a set of powerful
instruction for the bit manipulations like Insert, Mask, Ex-
tract and Merge, which are suitable for signal processing
applications. All the instructions are register-to-register in
accordance with the RISC principles, operating on 32
fixed-point registers, which are 32-bits long. The shift left
and right operation is designed to extend the sign bit on the
left, or zeroes or ones on the right.

In order to keep the design simple, there is no provision for
a cache. To make up for the absence of a cache, an in-

223

struction buffer is extended to 32 registers capable of con-
taining 32 instructions. A sophisticated branch handling is
provided for keeping branch target instructions or branch-
ing from the buffer, in case the target instruction is con-
tained in the instruction prefetch buffer.

On the data side, the absence of a cache is supplemented
by interleaving and by using a static colamn mode if inex-
pensive dynamic RAM is used for memory. It is also possi-
ble to switch the memory controller into the mode in which
fast static RAM is used, thus eliminating the need for cache.

INSTRUCTION SET DESIGN

The instruction set follows the principles of RISC architec-
ture. All the operations are performed on the registers, and
the transfer of dala between the processor and memory is
through the Load and Store instructions. This applies to
both fixed-point and floating-point processors, as well as
the operations which are performed on the data found in
both fixed-point and floating-point registers. In order to
perform the operation, the data must first be transferred
into the register file of the processor which is to perform the
operation (fixed-point or floating-point). This is done using
a special "transfer' instruction, the purpose of which is to
transfer data between fixed-point and floating-point register
files.

The instructions are chosen so that the instruction set re-
presents a small set of carefully selected instructions which
are simple to implement and which execute in one cycle.

Instruction Ty pes

The instructions fall into the following categories:

1. Load and Store Instructions (fixed and floating-point)

LDIR1,R2,R3 Load Indexed: R1 «~ (R2 + R3)

[1p1 [m R2 R3 [kp Kr |
(1] 7 12 17 22 30 31 32
2. Address Computation (fixed-point only)
CAI R1,LR2,R3 Address computation indexed : R1 « R2 + R3
[ean RI R2 R3 I
[] 7 12 17 22 32

3. Branch with or without executing the next instruction and link

BRAX BA Branch Absolute with execute: Execute next instruction, IAR < sign
extended BA

BRAX
0 7

BA J
kY]

4. Conditional Branches with and without link

BCNI CN, BI Branch on condition bit specified by CN in the condition code register
CR. upd.JAR < sign extended BI + IAR
Not is included in the condition code CN.

[BcNt
)

dits.

Bl]
32

CN
7 12

S. Bit Manipulations (fixed-point only }

MRG R1,R2,R3,PS,SZ : Merge SZ of R2 and PS from left and right of R3 into R1

prc RI R2 R3 s |sz |
) 7 12 17 22 27 32
6. Shift (fixed-point only)
SHR R1,RZ,R3,S : R1 < R2 shifted right for R3 position. If S=1 sign extended if
S=0 zero extended.
[sHR R1 R2 R3 | k]
° 7 12 17 22 31 32
7. Arithmetic Instructions
ADD RL,R2,R3 Add: RI « R2+R3
ADD R1I | R R3 [br o xr]
° 7 12 17 22 29 30 31 32
8. Logical Operations
AND RI, R2, R3 AND: Rl < R2.AND. R3
AND X | r2 [r3
0 7 12 1 22 32

9. Transfer Instructions

TFFL Transfer Fixed Point Register R2 into Floating Point Register F1. (32-bit
quantities)

TFFL F1 R2 [|

0 7 12 17 32
11. Multiply fixed, floating or integer operands
MLT F1,F2,F3 : Multiply F1 « F2XF3

MLT F1 F2 F3 | Ir o] |

0 7 12 17 22 29 30 31 32

12. 1/0 instructions

Whenever the implementation seems to complicate the
hardware and add complexity, the decision is made to emu-
late the function in software. This applies to both fixed and
floating-point units.

Most of the fixed-point and floating-point instructions exe-
cute in a single cycle, where the cycle time for the fixed-
point processor is 20 nS, while floating-point processor
cycle is 60 nS (3 basic cycles). The reason for a longer
floating-point cycle is simply because it takes longer to per-
form a basic floating-point operation, and 3 basic cycles are

224

the minimum time required. Exceptions are interrupts and
subroutine calls which take several cycles due to the need
of saving the complete processor status.

There are 32 registers in the fixed-point unit and 32 regis-
ters in the floating-point, organized as 32 32-bit registers
or 16 64-bit registers. Therefore we need 5-bits for the
register address in the instruction. The target register of
every instruction is named explicitly, so that each operation
is of the R1 , R2 type where the result is destined for R3.
Exceptions are instructions for monadic operation. With
15 bits used for addressing the registers and 7 for the
opcode, the instruction lengths of 24 and 40 bits would
provide a better utilization of memory and code space.
However, this requires a substantial overhead for demulti-
plexing the instructions from the Instruction Buffer, check-
ing if the entire instruction is contained in the Buffer, and
if it is not, checking if the page crossing is involved. There-
fore our decision is to use a single instruction length of
32-bits for the sake of simplicity. The extra available bits
are used conveniently for decoding the information about
the type of the operands and operation.

SYSTEM ORGANIZATION

The main components of the processor are shown on Fig.
1. All data paths between the memory controller and the
processing units are 32-bits wide. The fixed-point unit is
responsible for address generation for the floating-point
unit, and the instruction unit is capable of handling branch
instructions. The address inputs to the memory controller
originate from the instruction and fixed-point units. In-
structions and data are dispatched from the memory con-
troller to the instruction unit, fixed and floating-point
processors. The channel unit is connected directly to the
memory controller, since all the I/O communication is per-
formed in a DMA fashion.

Fixed Point Unit- FXU

The fixed-point unit (Fig.2.) operates in a 20 nS cycle and
all the instructions are executed in one cycle. Exceptions are
interrupts and system control instructions.

The fixed-point unit contains a register file of 32 registers
32-bit long, organized as a two-port read - one-port write,
with the nominal access time of 9.2 nS. The outputs from
the register file are staged in two registers with imbedded
input multiplexers, A and B. The input to the staging regis-
ters comes from various sources: the constant register sup-
plying constants, ALU, link register, loop counter, shifter,
leading zero count, and mask and merge unit.

The exchange of data between fixed-point and floating-
point units is through two staging registers containing the
32-bit data and 5 address bits of the destination register in
the fixed-point / floating-point register file. The transfer

instruction first reads data from the register file and then
place it into one of the staging registers, together with a 5
bit destination tag. In the next cycle, data is written from
the staging register into the register file of the destination
unit, assuming there is no contention to write into the same
location.

on Condition instruction, where the exiting condition can
be a predetermined number of iterations or the specific
condition - whichever occurs first.

Between the MCU and fixed-point units, there are three
staging register. Two are for data to and from the MCU and
one is for the address generated by the fixed-point unit.

from MCU

32

WX
3
| [« W
CONSTANTS FX_Ree
32 X 32
< 12 RA RS
to FLP <1335
H
! 5 B [
B 33 3 33 |
] A_REG 8_REG
1_FLD
L
ps >—S—
NASK
6255 WéReE
32

Fig. 2. Fixed Point Unit

LD ZERO
COUNT

FIXED POINT PROCESSOR
V.6.0klobdz! Ja|

The shifter unit performs a shift for any number of bit po-
sitions (1 to 31) left or right with the variations on the
leftmost / rightmost positions. When shifting right, the
rightmost bits are either sign extended or filled up with ze-
roes. In case of a left shift, the leftmost side is filled up with
either ones or zeroes. This is dependent on the S bit (in
position 31) of the shift instruction. We did not find any
strong reason for implementing a rotate feature and, given
the overhead for wiring complexity, decided against it.

The Mask and Merge unit can extract any number of bits
from one operand and place or merge it into any position
of the other operand. This is found to be a very powerful
feature for bit manipulation. This operation uses the shifter
unit, however the operation is performed in parallel with the
mask generation. Therefore, it is possible to accomplish the
operation in a single 20 nS cycle.

The Leading Zero Count is taken at the output of the ALU,
and the result is placed into the staging register or written
back into the register file.

The Link Register is used to save the return address after
the Branch and Link instruction is executed.

The Loop Count Register is used to store the loop count
during the execution of a loop terminated with the Branch

Floating-Point Unit - FPU

The Floating-Point unit operates on a 60 nS cycle - three
20 nS clocks (Fig.3.). The operand formats are consistent
with the IEEE-754 standards single and double precision
formats, in the length of the mantissa end exponent parts.
However, since it does not comply with all the prescribed
modes of operation required by the standard, it is therefore
not compatible. In addition to the floating-point numbers,
it operates on the integers of the lengths of 32 and 64 bits.

It contains a hardware multiplier, 32 by 32-bits in size and
a floating-point adder of the size of 64 bits for the mantissa.

The exponent circuitry in both the multiplier and the adder
are of 12-bit size. The size of the multiplier is determined
by the number of available gates and the chip area. It is the
multiplier that determines the basic cycle of the floating-
point unit.

The register file contains 32 registers of 32-bits. It has two
32-bit read-ports and one 64-bit write-port, made as a
combination of two 32-bit write ports. In this way it is
possible to write into the register quantities of both 32 and
64 bit size. Single precision operands are read simultane-
ously from the register file and fed into the multiplier or
upper portion of the 64-bit staging registers of the floating-

225

point adder. The double precision operands are read as a
register pair, one at the time, and stored into the staging
registers of the floating-point adder. Reading of the register
file is accomplished on the 20 nS boundaries.

to MCU

Register F1le
32X 32

(16 X 54)

Formeting &
Rounding

MPYREG REG FAD

Muitipitfer
32 X 32

Yy 64}

FLP_Adder
64

Fig. 3. Floating Point Unit

There is a path between the floating-point multiplier and
floating-point adder, so that the product is fed directly to
the floating-point adder. The Multiply-Add operation is
pipelined so that both units (adder and multiplier) are ex-
ecuting an instruction in a 60 nS cycle. On some problems
like matrix multiplication (single precision) the processor
can achieve a 33 MFP (mega-flops) peak. A sustained op-
eration rate depends on the code, and it can be anywhere
between 10 and 24 MFPs.

from MULT from REG

saf 76 64 75)
76, 76,
Sel R_a Sel R_b
Except.
12 1
12 12, 64 64
EXPON
NUX o EXCHANGE
4
12 64 °
Shift & Insert
64,
OP_CODE Oper ADD/SUB 64
64
STATUS
1_EXC Sub Zero Detect
64
SHIFT
Except

EXP FRACT

Fig. 4. Floating Point Adder

226

The operands can be passed between the multiplier and the
adder before being stored into the register file. Before the
result is written into the register file, it is passed through the
Formatting and Rounding Unit which will perform a
rounding operation as prescribed by the standard. It will
format the operand into a single or double word, depending
on the type of the operand to be written into the register
file. The Formatting Unit will signal an exception, if one
occurs. Not all of the exception conditions and formats as
prescribed by the standard are implemented.

Floating-Point Adder

The Floating Point Adder is shown on Fig. 4. Due to the
pre-alignment and post-alignment of the operands, includ-
ing the adjustment of the exponents, achieving 60 nS oper-
ation is not an easy task. The Adder (Subtracter) is
implemented as a combination of a conditional-sum and
variable optimal length carry-skip scheme [71. By combin-
ing a sophisticated scheme and a design optimized for speed,
the 64-bit addition is performed in 15.9 nS nominal time.

Floating-Point Multiplier

The Floating-Point Multiplier is shown in Fig. 5. Its main
components are an integer multiplier, an exponent adder
and a normalizer used for post-normalization of a product.
When operating in the integer mode the exponent unit is
ignored. The product is 64-bits long and it is fed directly to
the floating-point adder as one operand. The inputs to the
multiplier are staged in a combination of first-stage L1 and
second-stage L2, L3 latches, so that the next set of oper-
ands is ready in L1, while the multiplication is in progress
on the outputs of either L2 or L3, selected by the
multiplexer.

Multiplication of double length integers (floating-point
numbers) is performed by performing 3 add and 4 multiply,
operations using a multiply-add combination. This opera-
tion takes four 60 nS cycles.

Memory Control Unit- MCU

The processor’s addressing capability is a maximum of 1
MWord, 32 bit words with 20 nS access time.

Memory access is requested by four sources. These are the
channel unit, the floating-point unit, the fixed-point unit,
and the instruction unit. The priority assigned to them is in
a decreasing order of priority, as listed (i.e. the channel unit
has the highest priority).

The channel unit and the instruction unit are issue requests
to transfer blocks of data, up to 32 words long. These words
must be delivered in order. The requests include the starting
memory address and the length of the block.

The floating-point unit and the fixed-point unit request
transfers of a single memory word at the time. As a conse-
quence, vector transfers are presented to the memory con-

troller as a sequence of single word transfers. The
advantage of doing it this way is that these requests may be
fulfilled out of order, though they need to be tagged for such
purposes. Since the destination of these requests is one of
the 32 registers within either the floating-point or fixed-
point unit, the corresponding register number is used as the
tag. Thus, the request includes the memory address and the
register number.

32 32

L2]

(- g [

SEL

12z 12 32} 3

EXPONENT

MPY
32 X 32

65,
2,

Zero
ze MUX ;

J Norma) {
Status

Except: ‘_|———1

12 OVF ,UNF, INVOP 64
NaN , ZERO

Status \
Logic ——]'

NPY_STATUS

Fig. 5. Floating Point Multiplier

The Memory Controller operates in one of two modes,
supporting the use of either dynamic or static memory de-
vices. In either mode, the sources of memory requests
compete for access to the MCU. Their conflicts are resolved
using the priorities indicated before. The unit with the
highest priority is enabled to present its request to the
MCU. These modes are:

Use of Dynamic Memory

In this mode, the memory system is 4-way interleaved, with
256 KWords of dynamic memory per bank, using static-
column (page-mode) devices. 1 Mbit dynamic memory de-
vices are used, organized as 512 rows of 512 by 4 bits.
These are static-column RAM devices, with 80 nS access
time to locations within the same row. Each memory bank
has its own independent address bus. Each of these busses
includes 9 address lines for multiplexed Row Address and
Column Address, plus 3 control signals. In this mode, the
memory address presented to the MCU is used to identify
the required memory bank, and the status of such a bank is
checked. If the bank is available, the request is acknowl-
edged and processed. The requester, after being enabled to
present its request to the MCU, expects an acknowledge-
ment signal. If that signal is not received during the next
clock cycle, it implies that the memory bank needed is not
available. The source of the request must again present it to
the MCU.

227

To increase the utilization of the memory system in this
mode, each one of the memory banks has a queue of pend-
ing requests. Therefore, the acceptance of a request is ac-
tually subject to the availability of space in the
corresponding queue. As a consequence, and depending on
the status of the different queues, requests may be serviced
out of order, as it has been already stated.

Use of Static Memory Devices

In this mode, memory is treated as a single memory system
with the a 32-bit address bus. It is designed for 20 nS access
time static memory devices. The 32 address lines are ob-
tained by grouping the four sets of 9 address lines described
above into a single bus (with 4 unused lines). In this mode,
the address received from the requester is placed in the
proper output pins. No further processing of the request is
performed.

An additional operating mode with separate address spaces
for instructions and data (Harward Architecture) can also
be supported, but requires modifications of the MCU logic.

The Memory Controller performs the following functions:

data transfers
4-way interleaved addressing
selection of highest priority request and management
of request priorities

e support for the static-column mode allowing fast access
to the locations within the same row

e generation of timing and memory refresh signals

e single error correction, double error detection

The memory controller consists of two subsystems:

® A subsystem to accept and process requests. It includes
the logic to select requests according to their priorities,
the logic to process those requests, the queues and the
logic to implement the dynamic memory refresh sched-
ule.

® A subsystem to access the memory devices. It includes
the logic to generate the control signals to the memory
devices, the error correction logic, and the required data
interfaces.

Single error correction and double error detection are ac-
complished using a modified Hamming code. Seven parity
bits are computed from the 32 bits of data, and stored to-
gether with it.

Implementation consists of two internally connected data
busses to reduce the timing requirements imposed by the 50
Mhz clock.

Instruction Unit

The Instruction Unit 1U receives the instructions from the
MCU, eight at a time, in order to take advantage of the fact
that they are likely to be on the same page, since page
crossing penalties are costly. They are stored in the In-
struction Buffer (IB) whith a maximal capacity of 32 in-

structions. The Instruction Buffer is organized as a 32-bit
register file containing 32 registers and two read and one
write port. The reason for two read ports is so that two in-
structions can be decoded at the same time, and if no con-
flict is found, dispatched and executed. These two
instructions can be one fixed and one floating-point opera-
tion, or fixed (floating) point operation and fixed (floating
) point load (store). Branches are also handled by the in-
struction unit. The instructions are partially decoded, facil-
itated by their formats, and they are forwarded to the
corresponding fixed (floating) point units to be further de-
coded and executed.

Four target instructions of the most recently taken branches
with the three following instructions (total of four per
branch) are kept in a separate register file TIR (Target In-
struction Register), containing 16 32-bit registers. This
contains two read-ports which are connected to the in-
struction decode registers through the multiplexers so that
they can be easily swapped if the branch target is found to
be contained in TIR. The write-port of TIR is 64-bitd wide,
allowing the ability to write two instructions at the same
time, following the most recently encountered branch in-
struction. The replacement policy for the branch target in-
structions is "the last recently encountered". This is done
by keeping circular pointers pointing to the last location
which was written, and therefore replacing the four target
instructions which were the last written in the buffer. The
target instructions that are found in the buffer are not af-
fected i.e. they are not written back and their position in the
queue is not changed. There are four pointers to the TIR,
each having an instruction address appended to it for com-
parison purposes.

The fixed and floating-point status bits are passed to the IU.

The partially decoded instructions are forwarded to the
controel units of FPU and FXU for further decode and exe-
cution. Since the TU takes part in instruction handling and
execution, the control units of FXU and FPU are made
simpler.

IO Unit

The I/O unit operates in a byte-serial mode between the
memory and the I/O device. It is a 50 MHz byte-serial
packet consisting of a header with the information of the
packet length (in the number of bytes) and the destination.
The last byte is a CRC code. When the packet is sent to the
processor it interrupts the operation and it is transferred to
the memory having the highest priority given by the MCU.
The outgoing transfer is initiated by the MCU, which sup-
plies the starting and ending address in the memory and the
destination address.

IMPLEMENTATION TRADE-OFFS

Currently the largest available ASIC chip allows packing of
up to 70,000 gates. This number is very much dependent

228

on the regularity of the structure, the amount of imbedded
memory arrays, the size and number of busses implemented
on the chip etc. There are two versions of logic cells avail-
able for the designer: a fast and slow version. The fast
version consumes more power and has higher gate count
(area) than the slow version and should be used very judi-
ciously. Therefore, the fast cells are used only in the time-
critical paths, where the speed-up is absolutely necessary in
order to meet the 20nS cycle time. For the rest of the logic,
we use the standard "slow'" version.

We identified the cells having a low gate count and short
propagation time, and used them extensively throughout the
design. One of them is a multiplexer cell, which due to its
pass-transistor implementation yields very low gate count
and propagation delay. This turns out to be advantageous,
since the multiplexer is a very common and versatile build-
ing block in any computer hardware. In addition, we at-
tempted to identify and create new building blocks.

The fixed-point unit ALU and floating-point adder are built
using a variable-length carry propagation scheme [7]. The
advantage of this scheme for VLSI implementation is that
the fan-in and fan-outs are relatively small (2-3). The wir-
ing overhead is minimized since the carry-bypass circuitry
is minimal and only one wire is used for bypassing the carry
signal. This scheme in a small and regular structure with a
relatively small gate count. This scheme is actually compa-
rable in speed with the Carry-Lookahead scheme as shown
by simulation [7]. Yet, it implements itself in a small and
regular structure.

We used 513 gates for the 32-bit ALU, which resulted in
16.7 nS nominal time for the critical path.

The multiplier implemented in the FPU is also optimized for
speed by a careful selection of the mixture of the fast and
standard gates. Booth’s encoding is applied in order to
minimize the number of partial-product terms, which are

reduced to two operands by the network of 3-2 counters
(implemented as full adder cells). The final addition of
64-bits takes 16.1 nS nominal. The placement of the cells
is critical in order to achieve a compact and fast implemen-
tation. The result of the multiplier is an operand of a 64-bit
adder which facilitates multiply-add operation. By keeping
the product 64-bits long, we introduced extra precision,
which allows us several passes through the multiply-add
operation without significant loss of precision.

All the modules are designed in a strictly hierarchical fash-
ion, always attempting to identify and use common building
blocks. This makes repetition possible and reduces the de-
sign time and effort. Maintaining hierarchy is of outmost
importance in order to manage complexity and to achieve
short design time.

CONCLUSION

The basic principles of RISC architecture are applied to de-
sign a processor in fast turnaround ASIC technology. The
architecture is a trade-off between the features desirable in

order to make the processor attractive for a wide range of
computational problems, and the possibilities of available
technology. We feel that simplicity is a very important and
often overlooked. The benefit of a shorter design cycle of-
fers the ability to reach the market place with competitive
performance in a timely fashion.

ACKNOWLEDGMENT

Monty Denneau instigated this work and provided the key
ideas. Jaime Moreno contributed to the memory control
unit. Greg Grohowski lent his expertise on high-
performance processor architecture during many pleasant
discussions.

REFERENCES

[1] George Radin, The 801 Minicomputer, IBM T.J.Watson
Research Report RC 9125, November 11, 1981.

[2] J.L.Hennessy, VLSI Processor Architecture , IEEE
Transaction on Computers, Vol. C-33, No.12, December
1984.

[3] C.Rowen et al. RISC VLSI Design for System-Level
Performance VLSI System Design, March 1984.

[4] AMD 2900 User’s Manual, Advanced Micro Devices
1987.

[5] D.A. Patterson, C.H. Sequin, RISC I: A Reduced In-
struction Set VLSI Computer , Proceedings of 8th Annual
Symposium on Computer Architecture, Minneapolis,
Minnesota, May 1981.

[6] How Weitek Chips Run FORTRAN at 25 Megaflops ,
Electronics, October 30, 1986.

[7] V.G.Oklobdzija, E.R.Barnes, Some Optimal Schemes for
ALU Implementation in VLSI Technology , Proceedings of
7th Symposium on Computer Arithmetic, June 4-6, 1985,
University of Illinois, Urbana, Illinois.

[87 V.G.Oklobdzija, E.R.Barnes, "Simple and Efficient
Scheme for VLSI Implementation of Addition"', Submitted
to the special issue of Journal of Parallel Processing and
Distributed Computing, April 1988.

229

