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ABSTRACT

An architecture for a single~chip VLSI implementation of # Wigner
distribution stgnal processot is presented. ASIC implementation in
CMOS technology is tonsidered with complexity of 65,000 gates,
achieving & maximum throughput of 12K 16-bit samples per sccond.
The architecture takes advantage of the high level of integration and
low power consumption achicvable with CMOS technology thus
eliminating clock skew and off~chip delays associated with chip-
crossing peoslfics. By Intcgratimg the Wigner processor on the gin-
gle chip, the implementation is made practical and attractive for
processing acoustic signals,

INTRODUCTION

The Wigner distribution (WD) has recently received considerable
attention a8 a tool for time-frequency signal analysis. Itis a 2-D
real function that, loosely speaking, displays the time evolution

of the frequency content of the signal. This makes it particularly
useful for analysis and characterization of non-stationary and
transicnt signals. In partienar, the most recent rescarch results
indicate its usefulness in both active and passive underwater
acoustic surveillance, identification of tarpget sighatures, speech
anaiysis and recognition.

Several authors have addressed the issue of fast hardware imple-
mentations of the WD [1-4], They came up with architectures
suitable for real-time computation of the WD of signals with
sampling ratcs up to a few Kilohertz. Esrly results [1,2] repres-
ented direct implementations of the defining equation in hard-
ware. More recently. 8 microprogrammed impiementation based
on standard bipolar multiplier-accumulator chips has been pro-
posed {3]. A systolic architecture based on the single moduius
quadratic residue number represcntation has aiso been advanced
lately [4]. However, all of these implementalions use many chips
or even several boards, resulting in considerable size and power
dissipation, yct not providing s corresponding throughput in-
crease,

Rapid advancements in VLSI technology make it possible (o in-
tegrate more functionslity on a single chip and maintain a rela-
uvely high processing speed. taking advantage of the proximity
of the components and of the elimination of chip-crossing and
clock skew penaltics.
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In this paper we undertook a study of VLSI implementation of
Wigner distribution signal processor on a single chip. The esti-
matc of the complexity in terms of the number of gates and
propagation delays arc based on data for currently available
CMOS technology. In the evaluation of the performance and in-
tegration level we used data available for a fast turn-around ASIC
technology which allows for rapid prototyping and implementa-
tion, The study shows that the throughput achievable with this
technology is substantial and satisfactory for real-time underwa-
ter acoustic and speech signal processing. Using custom design
methodology. further increase in the level of integration and
throughput is possible. However, given the fast pace of ad-
vancements in lechnology, we believe that the advantage of rapid
prototyping and fast turn-around outweighs the potentis! gains
achicvablc with custom design.

Our cstimates show that a single-chip implementation in
CMOS-ASIC technology is quite feasible. The performance esti-
mates obtained with a simulation of critical components and paths
shows that & significant real time throughput rate is achievable.

COMPUTATION OF WIGNER DISTRIBUTION

In most applications dealing with band-pass signals it is advanta-
geotis 1o use the WD of the corresponding complex anelytic sig-
nal. In this way, the redundant interfering cross-terms that exist
around zero frequency in the WD of the real band-pass signal are
eliminated. The imaginary part of the analytic signal is obtained
through the Hilbert transformation of its rcel part which is equal
to the original signal. The conventional way of computing the
WD of the real signal requires oversampling (interpolation) of the
signal by the factor of two. Although the compmation of the WD
of the analytic signal does not rcquire oversampling, the total
number of real samples representing the signal of interest (real
v&. analytic) is the same in both cases. Since the WD of the ana-
Iytic signal contains less redundancy, it is the representation of
choice when dealing with band-pass signals, such as underwatcr
acoustic and speech signals.  Therefore, the 127-point FIR
Hilbert transformer was included on the same chip with the WD
processor, '

Computation of the WD involves generation of the uuto-product
of the signal with its displaced and time reversed version, followed
by the Fourier transformation. In our implementation, computa-
tion is optimized by teking advantage of the symmetry propertics



of the signal auto-product. By suitably combining the two suc-

cessive auto-products, it is possible to generate two successive
time slices of the WD in one step as the real and imaginary part
of the Foutier transform of such combined auto-product. Each
of these properties effectively doubles the throughput of the
computation; resulting in the guadrupling of the performance,
relative to the dircet implementation.

The discrete-time WD (DTWD) is defined as 5] :

Win, 8) = 2 2 2n + K)E(n — k) exp( —j20K) (1)

[

where overbar indicates complex conjugation. In the seqoel we

will take £(n) = 5(n) + j5 (n) where 5 (n) is the Hitbert transform
of s(n).

In practice, only a finite amount of data can be processed and
therefore windowing has to be cmploved. The WD of the win-
dowed data then becomes:

M
Win, 8) =2 2 2(n & kYE(n — k)wlk) exp( —j0k)  (2)
kw—M

We will choose the rectangular window w{k) = 1. «M £ k £ M,
as is uswally done in practice. A different choice would result in
only slight modification of the design that follows. The WD
Wi(n, 6) can now be evaluated as a finite number of points
0= -;—m. m ¢ [0,N — 1] that cover its basic perind 6 € |0, w)

M
Winm) =2 2 z(n + k)F(m — k) cxp( —jz—t'mk) (3)
kwwM N

& 20
=2 3 rk) oxp( =S mk)
km—M
where (k) =x, +jn (k) m2(n + K)En— k), - M g kS M.,
Usually, N = 2M+1.
The auto-product #,(k} has a couple of symmetry proparties that

can be exploited in order to reduce the eomputation by a factor
of 4. First,

k) =E(—k), ~MSksM %)

Only the real part of the DFT of such a sequence will bc non-zero.
On the other hand, the DET of the combination of two successive

sequences
Ry(K) = 1, (k) 401 (k) 2,0k) = Jpar KD + L5000 (k) + n(K)] (6)
will bave:
RelDFTLR, ()]} = DFT{r,(k)] = W(nm) ¢}
Im{DFT{R,(k)]} = DFT{r, (k)] = W(n + 1m) (8)
Thercfore, & single DFT computation on R,(k) will produce two
stices of the DTWD : W(n,m) and W(n+1,m). This reduces the

number of DFT computations by 2.
Another symmetry property:

Ryl =k) = Fifk) o fFpp k) = 2, 0K) + iy (K + JTx, 00 (K) = 38k) ] (9)

implies that x,(k), y,(k), »,.i(k), %, (k) should be evaluated only

for non-negative k. 0 ¢ k € M. Therefore the number of muli.
plications required to compute R.(k) can be halved by exploiting
this property :

M
Winm) + jWn+1m)=2 2 R, (k) exp( —j—z-;;— mk)
k=M !

M
= 2R,(0) + 22R,,(k) exp( —j-zl—y- mk) + R, ( =k) Exp(j-%\'; mk)

hw |

M
= {2x,(0) + 4§[x,(k)ws( N mk) + y,(k) sin{ N mk) ]}

M
+ 122, (D) + 42&“,(&) cos( —27\’% mk) + y, ) sin( -27' mkyJ4 (10)
(3]

As a result we obtain the following algorithm (ignoring the scaling
constant 4):

Given s(1) n=Mgi<n+M~+1
Repeat:

31
$(n) = D A(K)s(n 4 63 = 2k) = 501 = 63 4+ 2] (1)

k=l

kX!
S(ra D)= RS + 64 = 2K) = s(n = 62 + 21D

kol
For maO.N-1
Winm) = —;— {sz(n) + ;\z(n)]. (13)
Win + l,rn)"';—[!:("* D+ 80+ )], U4
For k=1M
X (kY = 51 + K)s(n = k) + 5 (n % k) (n = k). (s
2ilk) = S (n 4 K)s(n = &) = s(n + k)t (1 = k): (o)

Ty Ky =5+ 1 4 k)sn + | -k)+?(n+ | +k)?(,,+ | -4y,

an
A
FnetkVm S 4 L 4 KIS + 1 — kY =i 4 1 4 BYS U | = A

(%)
For m=0N-]
Winm) m Winm) + x,k) cos( —2)5';».&) + 3,0k sing -3-:- k).

(i,
Win + 1m) =

W(n 4+ Lm) + x,, (k) cos( -"-)A‘,’—mk) + ¥4 (k) sing —2;:—mk): Qm

n=n+2;

untii DONE,



ARCHITECTURE AND FEASIBILITY OF IMPLEMENTA-
TION

The propnsed architecture for computing WD trades-off the
speed of FFT algorithms for the hardware simplicity and regulare
ity of the direet DF1 computation that allows re-use of the same
simple hardware at different stuges of computntion. As a result,
the processar fits on 2 single high-speed VI.SI ASIC chip and
achieves realstime performance with realistic data block length
N=127.

The processor consists of (Fig.t. )

® o repisier files of 128, 16-bit registers organized as two-
pori-read, one-port-write ( GRA, GRB ). GRA contsins
real parts of data while GRB is used {or storing imaginary
parts.

&  onciook-shcad buffer of 64 16-bit regisiers (LAB).

® 1wo read-only files containing 128, 16-bit constants. The
register CRC contains 128 element table of cosine function
and CRS contains sine fungtion.

o read-only reptsier lile CRH contains 1able of 32 non-zero
FIR Hilbert transformer coefficients, 16-bit wide.

® four 16 by {6 bit integer multipliers: M1,M2 M3 M4,
& two 16-bit adder/subtracters: AS1, AS2.

"8 The outputs of the ASY and AS?2 are accumulated in adders
AD1 and AD2 and read-write repister files GRI and GR2.

At the end of the computational cyele GR1 and GR2 ¢ontain two
slices of the WD taken at two consccutive times.

This organization of data storage facilitates the time multiplexing
of the arithmetic unit since the cxisting data path is used and there

is no need for ¢xtra hussing. T'wo extended accumulators are used
10 secumulate the results of summation and they are organized
ax two-port register files of 128 16-bit repisters,

Opersation

The [irst register lile GRA is lilled up with 128 signal samples.
Look-ashead bulfer (LAB) contains the next 64 samples. This
LLAB is updated at the signal sampling rate /. Both LAB and
GRA arc used as circular buffers: ic.. the "oldest” ssmple in
LAB is overwritten by the incoming sample, and the "oldest”
sample in GRA is overwritten by the "oldest” samiple in LAB.

Phase=1: Hilbert rransformation

127 point FIR filtering is performed according to the equations
(11} and {12). using the data path shown in Fig, 2.

Signul sumples s(n+83-2k) are taken from LAB and S(n=63 +2k)
are taken from the register file port B, passed through the
muitiplexers MX1 and MX2, multipliers M4 and M2 ( being
multiplied by 1) and subtracied in AS2.

The result is temporarily stored in SR4. Then the difference (
content of SR4 ) is multiplied by the corresponding {ilter coeffi-
cient h(k). t aken from CRH, using multiplicr M3 and the result
accumulated in SR1.

These two sleps take one cycle sach. ‘They arc repeated for each
k (k¢ [0.311 ) 10 produce one sample of the Hilbert transfor-
mation, At the end, the resull in SRI is stored in the corre-
sponding location of the circular buffer GRB(n). These steps are
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then repeated to compute ; (n + 1) according 1o equation (12).

Phase-1 takes 64 cycles per input sample, 128 total. At the end
of this phase. GRA and GRB contain real and imaginary part of
the analytic signal cotresponding 10 the resl input,
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Fig. 2. Dete path for Hiipert tremsformation
e (11),(12)

Phase-2

Initialization of W(n,m) and W(n+1.m) is performed in this
phase according to egs. (13).(14), using the data path shown in
Fig. 3. This process takes 2M cycles,

v ]
- «y
I7MK16 180X
A
L Sy R
| I
S22 4 A A1 iRy
]
1
X1 L]
3 1 u{ 15,
L3
)| I
v X H H ]
[ L4 [ [ &
1emx)e L R
5 L
b TSR v | 3
R
w® 01 209, I
N <

FiQ. 3, Date path for imitralization of
H{m,n) and W(n+l,m), e0e (13),{14)

Phasc-3
In this phase two successive complex auto=products (15),(16) and

(175,(18) are computed. The computation process is depicied in
Fig.4.

The results x, and y, are saved temporarily in SR2 and SR3 while

X,.: and y,,, sre stored in SR1 and SR4. This is donc in two cy-
cles.

Fig. 4. Natn path for computstion of X (K), v (k)
and s (K, y (k) , egs (15)=(18)

Phase-4

In Phase-4 x (k) , y.(k), x,,,(k) , yp4(k) are kept in SR1 - SR4 and
used to compute partial sums (19) and (20). The compuration is
depicted in Fig 5. and takes N cycles.

The Phase-3 and Phase-4 arc repeated M times for cach value of
k. The time spent in Phases 3 and 4 is (2+N)M clock cycles. The
tola] computation pcr pair of input data samples takes
(2Z4NIM+12842M = M(2M+5)+128= 2M°% cycles. The
iumber of cycles per one sample is then M? = M /4, This implieg
that the clock rate must be £, g —fr

For each new pair of samples the process is restarted at Phase-1.

Our objective is to achicve real time performance with 12KHz
sampling rate in & single chip implementation, With this archi-
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Fig. 5. 0ate beth for scoumylation of
Win,m and Wimed,m), ege (16),(20)



teeture the maximum sampling rate for real time operation is

limited 10 f = 4f /N, where £, is the processor clock rate and
N is the data block lenpth. Maximal block fength of 127 data
poimts cach represented with 10-hits is specificd given the current
technology constraints. By pipelining K such processors the
throughput ean be increased by K.

The implementation takes advantage of diffcrent rates 8t which
signals need to be provessed 8t different stages of computation.
Therefors by tme multiplexing an arithmetic unit designed to
perform fast complex multiplication it 15 possible to save on
hardware without significantly degrading the processor through-
put. The arithmetic unit is utitized with such a fiexibility thul the
Hilbert trunsformation. complex signal samples multiplication
and muitiplication with the complex exponential constants in the
kerne) of the Fourier transformation arc all periormed with the
same unit. The arithmetic vnit is designed [or muximum speed
since it determines the minimum clock eycle and therefore a
maximum achievable throughput. 1t consists of four 16 bit
multiplicrs and two 32 bit adder-subtraciers. To alleviale the
tound-off errors 32-bit addition is performed after the multipli-
cation of the complex terms. However this addition is hidden in
an cxtended column compression strugture which s, in essence.
performing s carry-save function in adding the opcrand from the
associaled multiphier. The final addition which involves carry
propagation s the addition of two product terms.

The muluplier is implemented using 2's complement Bonth re-
coding scheme in order 1o reduce the number of product terms.
The recoded multiplicand is uscd for both neighboring multipliers
since il is wired to the same input and thercfore the gate count is
reduced, There are three recoded multiplicands used in the
multiplicrs 1-2 , 2-3 and 3-4 respectively. The entire operation
of muttplying four operands and adding the corresponding parts
together yielding in an rcal and imaginary part of the complex
number product is performed in one 2018 single clock eycle.

Complexity af the Implementation

In order to {it this implementation on a single chip, the largest
currently uvailable ASIC chip is required 6.

In this case we need approximately 65,000 gates which is cur-
rently available [5]. Estimated use of these gales is: 48,000 in
arrays. 12,000 in the dara path and 5,000 in the control logic.
The size of the chip can he further reduced by using custom de-
signed register files placed inside the ASIC chip.

The chip requires v relatively low pin-count 64-pin package which
reduces the cost of manufacturing. With the clock eyele of 20nS,
12KHz throughput is achicvable with the currently available
CMOS technology.

It is possible to place this implementation on a smaller ASIC chip,
like LCA10129 171181, in which case the data block size needs

1o be redvced to by a [actor C and loss in frequency domain re-
solution is 1o be expected. This, on the other hund, allows in-

4 €
crease in the sampling frequency f, € —-{7’- by ¢
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CONCLUSION

We huve shown that it is possible to integrate the WD processor
on a single ¢hip without sacrificing resolution or performance.
The algorithm for computing WD is 1ailored for time-sharing of
relatively simple and fast bardware modules. This makes imple-
mentation of WD practical and attractive for acoustic signal
processing.
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