
AN EFFICIENT TRANSISTOR OPTIMIZER FOR CUSTOM
CIRCUITS†

Xiao Yan Yu1, 2, Vojin G. Oklobdzija1, 2, William W. Walker2

1ACSEL Laboratory
Electrical and Computer Engineering
Department, University of California

Davis, CA 95616
http://www.ece.ucdavis.edu

(yanzi,vojin)@ece.ucdavis.edu

2Advanced LSI Research
Fujitsu Laboratory of America

Sunnyvale, CA
walker@fla.fujitsu.com

Abstract
We present an equation-based transistor size optimizer that
minimizes delay of custom circuits. Our method uses static
timing analysis to find the critical paths and numerical methods
to optimize transistor sizes continuously without using simulation.
Consequently, it is faster than simulation-based optimizers, and
more general than standard cell optimizers. We demonstrate its
efficacy and accuracy on a dynamic adder, where we achieve a
54% speed-up and final critical path delay that matches Spice
within 1%.

1. INTRODUCTION
Transistor sizing of CMOS circuits is an essential design
step to improve performance. In pipelined microprocessors,
paths between registers that exceed the clock cycle time
require transistor sizing to reduce delay. Sizing transistors
is one of the most difficult and time-consuming designer
tasks, consequently, much research has been done on
algorithmic sizing procedures to reduce the designer
burden. Approaches to optimization that have been
presented in the literatures can be classified into four
major categories:
First is Spice-based Optimization, Star-HSPICE, for
example, can be programmed to optimize delay, power, or
any products, such as Delay×Power2. However, due to the
long run times associated with Spice simulation, and the
nonlinear behavior of transistors, the algorithm is
inefficient for circuits containing more than a handful of
transistors or fails to converge at all to a global minimum.
Second is event-driven simulator optimization such as
Jiffytune [3], which replace the Spice simulator with a
faster event-driven simulator. Event-driven simulation is
approximately two orders of magnitude faster than Spice,
and can process about 1,000 transistors efficiently.
However, the problem of manually finding and sensitizing
critical paths for a large circuit becomes intractable for the
user.

† This work has been supported by SRC Research Grant No. 931.001,
Fujitsu Laboratories of America and California MICRO 01-063.

Furthermore, circuit blocks in modern microprocessors
frequently contain thousands of gates, which exceed the
capacity of even this class of optimizer.
Third is static timing based standard cell optimization.
Since standard cells come in discrete sizes, these
optimizers rely on substitution of different size gates to
find delay and power minima rather than gradient-based
optimization. One of the problems with these optimizers is
the lack of application to full custom circuits with arbitrary
transistor sizes and design styles.
Finally, there is the method of Logical Effort [1]. This is a
gate-based critical path optimization strategy used to
minimize delay. It can be applied to standard cells or
custom circuits. Because it uses a very simple delay
formulation (d = d0 + RCL) and normalizes delay to an
inverter, a simple general principle can be derived – that of
equalizing stage effort - allowing back-of-the-envelope
optimization of a critical path. The problem with logical
effort is that it does not lend itself well to optimization of
multiple interconnected paths, and its delay model error
can exceed 20%.
Our optimizer uses the best features of the previous
methods. First, we use accurate scalable delay equations
rather than a circuit simulator because we desire to handle
large circuits, and we can – and will – show that our delay
equations produce less than 10% error compared to Spice
simulations. Second, we use static timing analysis to find
critical paths, but unlike previous static timing based
optimization, our method uses continuously variable
transistor sizes, and also applies to dynamic circuits.
Consequently, it is applicable to custom design, although it
retains the efficiency of static timing based standard cell
optimizers.

2. OPTIMIZATION ALGORITHM

2.1 Overview of the Optimizer
Our optimizer uses an iterative algorithm to perform delay
optimization. Fig.1. is a flow chart describing the

algorithm. The subsequent sections describe the details.
We solve the following problem: given a Spice

Initial
Spice
Netlist

Flatten Spice
Netlist

Verilog
Netlist

Static Timing
Analysis

New
Critical
Path?

Finish

Size all the gates on
the critical path
using Steepest

Descend method.

Flatten
Spice
Netlist

Convert to
Verilog

Cell
Library

Yes

No

Update

Fig. 1. Flow-Chart describing the algorithm.

netlist with an initial set of (poorly sized) primitive cells
with delays modeled by scalable equations and no
knowledge of the critical paths, what is the optimum size
of each cell that minimizes the critical path delay(s) of the
circuit?

2.1.1 Initialization
The initial Spice netlist is flattened down to the primitives
in the library. A primitive can be any inverting static or
dynamic gate. Flattening is needed so that multiple
instances of the same primitive gate can be sized
independently. The netlist is then converted to Verilog
format to be read in by the static timing analyzer together
with the library file. Furthermore, the library cells are
copied, one for each instance name, with instance names
appended to the cell names. This facilitates independent
sizing of every gate in the design.

2.1.2 Static Timing Analysis
This block uses a commercial static timing analyzer
(Synopsys Primetime) to analyze the entire circuit and
report the critical path based on the delay model described
in Section 2.2. If no new critical path is found in the
current loop, the algorithm has converged.

2.1.3 Size Gates in Critical Path
This procedure sizes the gates in the critical path to
minimize the delay. The optimization involves
computation of the delay gradient with respect to the sizes
of each gate in the critical path, then using the method of
steepest descent to find a minimum. The library is updated
with the new gate sizes. The details of the algorithm are
described in Section 2.3.

2.2 Gate Delay Formulation
We model the gate delay, drise, from input to output for
output rising as follows:

fallfallLriseriserise tkCrdd ×+×+= 0 (1)

where CL is the load capacitance and tfall is the 10-90%
input fall time, and model coefficients are d0rise, the
intrinsic gate delay for output rising, rrise, the rise
resistance, and kfall, the dependence of delay on input fall
time. Similarly,

riseriseLfallfallfall tkCrdd ×+×+= 0 (2)

where trise is the input rise time and model coefficients are
t0fall, the intrinsic gate delay for output falling, rfall, the fall
resistance, and krise, the dependence of delay on input rise
time.
The 10-90% output rise time (trise) and output fall time (tfall)
are modeled as follow:

Lrtrise0rise Crtt ×+= (3)

Lftfallfall Crtt ×+= 0 (4)

where t0rise, t0fall, rrt and rft are model coefficients. All model
coefficients are determined using a least-square fit to Spice
simulations in which the output load and input transition
time of the gate being characterized are varied. In the case
of a dynamic gate, only dfall and tfall equations are used –
assuming the dynamic node is pulled low during
evaluation.
Our algorithm scales gates in a design during optimization.
In our scaling formulation, we assume intrinsic delay,
intrinsic rise-times and rise time dependence of delay are
constant, resistances scale inversely with scale factor, S,
and input capacitance scales linearly with S. i.e, delay
equations for a scaled gate are related to the original
equations as follows:

fallfallL
rise

riserise tkC
S

rdd ×+×+= 0 (5)

L
rt

riserise C
S
rtt ×+= 0 (6)

The validity of these assumptions will be justified by the
close agreement between the post-sizing model results and
Spice simulations shown in Section 3.

2.3 Transistor Sizing
This section describes the sizing procedure for the
transistors in the critical path reported by the static timing
analyzer. The delay formulations were explained above.
To show this procedure will produce a closed-form
solution, consider the example path below.

gate1 gate2 gate3
cin cin2*s2 cin3*s3csl1 csl2 cout

Fig. 2. A sample path demonstrating transistor sizing
The path consists of Gate 1, Gate 2 and Gate 3. Gate 1 has
a fixed size (which we arbitrarily set to 1) and drives Gate
2 which is sized by a factor S2 and a side capacitance of
Csl1. Gate 2 drives Gate 3 which is sized by a factor S3 and
a side capacitance of Csl2. Our optimizer determines S2 and
S3 numerically by using the method of Steepest Descent,
which is explained below. The equations for the delays
through each gate are listed below:

()
11 1221101 transl tkSCCrdd ×++×+= (6a)

()
22 2332202 transl tkSCCrdd ×++×+= (6b)

33 3303 tranout tkCrdd ×+×+= (6c)

where t01, t02 and t03 are the intrinsic delay values for gate 1,
gate 2 and gate 3 respectively, r1 through r3 are the on-
resistance value of each gate, k1 through k3 are the input
transition time constants for each gate and ttran1 through
ttran3 are the input transition times to each gate. Note that
the critical path can be either rising-falling-rising at
outputs of gates1-3, or falling-rising-falling, so we have
omitted the rise/fall subscripts on the model coefficients.
S2 and S3 are the unknown sizes that we select using the
Steepest Descent method to minimize the delay. This
method starts with the initial size, S0. At each step of the
iteration, the size vector, S, is updated by equation (7)
where ∇ d is the gradient vector of the delay with respect to
the sizes, and δ is the step size. Iteration stops when the
relative delay improvement between iterations is below the
convergence threshold.

dSS ii ∇•−=+ δ1 (7)

2.4 Target Technology and optimization setup
The evaluation of this optimizer is based on a commercial
CMOS technology [4], with 0.11µm minimum feature size
and 1.2V power supply. Pre-layout wiring estimates were
based on 10 µm data-path bit pitch. All circuits were
optimized using 12 times the minimum sized inverter as
driver and 40fF capacitor as the load at 25°C temperatures.

3. SIMULATION RESULTS
Our optimizer was tested on several adder critical paths
and one complete adder proposed in [5]. These tests were
performed on a SunFire 280R computer.

3.1 General Simulation Procedure
The procedure is as follows.
1. The primitive library coefficients of all cells used by

the circuits are derived by fitting to Spice simulations
using least squares.

2. Schematics are created and the wiring capacitances
are drawn as lumped capacitance estimated using the
technology profile in Sec. 2.4.

3. Initial Spice netlists are extracted from schematic
capture with input and output pins at the top level
specified.

4. The optimizer is run to minimize the delay by using
the algorithm shown in Fig. 1.

3.2 Optimization Results on Different Adder
Circuits
Table 1 shows the actual optimization results. Park Adder,
with implementations shown in Fig. 4, is the complete 64-
bit dynamic adder from [5] where: dynamic_HC_p2,
static_HC_p2, dynamic_KS_p2 and static_KS_p2, are
dynamic Prefix-2 Han Carlson adder critical path, static
Prefix-2 Han Carlson adder critical path, dynamic Prefix-2
Kogge Stone Adder critical path and static Prefix-2 Kogge
Stone Adder critical path respectively with shown in Fig. 3.
Since Park Adder is a complete adder with no initial effort
on sizing, the optimizer has to iterate over different paths
and optimize the sizes of the cells on each path for
minimum delay. It converged at the 174th loop. The critical
path circuits for both Dynamic and Static version of
Prefix-2 Han-Carlson and Kogge Stone Adders converged
at the second loop since the optimizer does not have to
iterate over a single path. The final optimized delays
reported by the optimizer using our delay equation are
shown in the third column together with the Spice times in
column 4, and the error in column 5. The improvement,
which is the percentage difference between the initial and
final critical path delay after optimization, is shown in
column 6, and the CPU times for each run are shown in
column 7. We must point out again that no attempt to pre-
optimize the circuits before running the software was
made; all circuits were designed with unit gates. However
this is the preferred design style because it reduces the
primitive library size and designer effort.

4. CONCLUSION
This paper presented a delay optimizer that is capable of
sizing primitive gates in any custom circuit, including
dynamic circuits, without the need to spend any effort on
initial sizing. It iteratively makes use of a static timing
analyzer to report critical paths and then sizes transistors in
the paths using a delay equation model. Several test
circuits have been used to prove its efficacy. The final
output critical path delay, modeled by scaling the initial

primitive delay equations, is within 5% of Spice
simulations.

Acknowledgement
The authors would like to thank Hoang Q. Dao for
providing the test circuits.

REFERENCES
[1] I.E. Sutherland and R. F. Sproull, “Logical Effort: Designing
for Speed on the Back of an Envelope”, in C.H. Sequin, Ed.,
Advanced Research in VLSI. Cambridge, MA: MIT Press, 1991.
[2] I. Sutherland, B. Sproull, D. Harris, “Logical Effort:
Designing Fast CMOS Circuits,” Morgan Kaufmann Publisher,
1999.
[3] Conn et. al, “Optimization of Custom MOS Circuits by
Transistor Sizing”, Computer-Aided Design, 1996. ICCAD-96.
Digest of Technical Papers., 1996 IEEE/ACM International
Conference on , 1996, pp. 174 -180.
[4] Y. Takao et al, “A 0.11 µm CMOS Technology with Copper
and Very low-k Interconnects for High-Performance Sytem-On-a
Chip Cores”, Electron Devices Meeting, 2000. IEDM Technical
Digest. International, 2000.
[5] J. Park, H. C. Ngo, J. A. Silberman, S. H. Dhong, “470ps
640-Bit Parallel Binary Adder,” Symposium on VLSI Circuits
Digest of Technical Papers, pp. 192-193, 2000.
[6] H. Ling, “High-Speed Binary Adder”, IBM J. Res. Dev.,
vol.25, p.156-66, 1981.

[7] Mathew, S.K., Krishnamurthy, R.K., Anders, M.A., Rios, R.,
Mistry, K.R., Soumyanath, K., “Sub-500-ps 64-b ALUs in 0.18-
/spl mu/m SOI/bulk CMOS: design and scaling trends”, Solid-
State Circuits, IEEE Journal of Volume 11 , Nov. 2001.
[8] Press, W. H, et al, “Numerical Recipes, the Art of Scientific
Computing”, Cambridge Univ. Press, 1986.
[9] Hoang Dao, Vojin G. Oklobdzija, “Performance Comparison
of VLSI Adders Using Logical Effort”, 12th International
Workshop on Power And Timing Modeling, Optimization and
Simulation, Sevilla, SPAIN, September 11-13, 2002.
[10] V. G. Oklobdzija, “High-Performance System Design:
Circuits and Logic”, IEEE Press, 1999.

CK

Gi

Gi-1

G

Pi

CKPi

Ai

Bi Gi-1

Pi

Gi

G

Gi-1

Gi

Pi-1
CK

Gi

Ai Bi

(p,g)
XOR2

NAND2
NOR2

OAI

CM6CM1
NAND2

AOI
NOR2
OAI

CM2 CM3
NAND2

AOI
NOR2
OAI

CM4 CM5

AOI

CMo

XOR2

SumCiN

Fig. 3: Critical path block and gate implementation for Prefix-2

Han Carlson and Kogge Stone Adder

CK G4

A3

B3

A2

B2

A1

B1 B0

A0

B1 A1

A3

B3

A3

A2

B3

B2

A3

B3

A2

A3

B2

B3

A3

B3

A2

B2

A1

B1 A0

A1 B1

B0

P4CK

CK

CK G16

CK

g3 g2 g1 g0

p1

g3 p2

p1

g3 p2

p3

p1CK

g3 g1g2 g0

CK P16
G3 P2

P3 HS

STB

HSN
Sum

CK P1

G3 G2 G1 G0

CK

CK G4

A3

B3

A2

B2

A1

B1 B0

A0

B1 A1

A3

B3

A3

A2

B3

B2

A3

B3

A2

A3

B2

B3

A3

B3

A2

B2

A1

B1 A0

A1 B1

B0

P4CK

CK

CK G16

CK

g3 g2 g1 g0

p1

g3 p2

p1

g3 p2

p3

p1CK

g3 g1g2 g0

CK P16
G3 P2

P3 HS

STB

HSN
Sum

CK P1

G3 G2 G1 G0

CK

G4, P4

G16, P16

Cout, Sum

HS, HSNOT

A B

ck

Fig. 4: Critical path block and gate implementation Park Adder

Table 1 Simulation Results
 Final Critical Path Delay (ps) Improvement over initial sizing

Name # of Cells Model Time Spice Time Error (%) Improvement (%) CPU Time (s)
Park_Adder 1712 394.68 393.18 0.88 53.92 3811

Dynamic_HC_p2 16 480.59 474.02 1.39 25.39 22
Static_HC_p2 16 534.45 512.70 4.24 24.12 18

Dynamic_KS_p2 14 400.07 396.66 0.86 27.32 23
Static_KS_p2 14 511.32 500.25 2.21 10.99 17

