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Abstract. Application of logical effort on transistor-level analysis of different
64-bit adder topologies is presented. Logical effort method is used to estimate
delay and impact of different adder topologies and to evaluate the validity of the
results obtained using logical effort methodology. The tested adder topologies
were Carry-Select, Han-Carlson, Kogge-Stone, Ling, and Carry-Lookahead
adder. The quality of the obtained estimates was validated by circuit simulation
using H-SPICE for 1.8V, 0.18�m Fujitsu technology.

1   Introduction

Delay estimation is critical in development of efficient VLSI algorithms [2].
Unfortunately, delay estimates used are usually presented either in terms of gate
delays or in terms of logic levels. Neither of these estimates allows us to properly
evaluate different VLSI topologies. One such component, VLSI adder, is critical in
the design of high-performance processors. Using gate delay is no longer adequate
because gate delays are dependent on gate types, the number of inputs (fan-in), output
load (fan-out), and particular implementation. Further, a particular VLSI
implementation can use static or dynamic CMOS where logic function is usually
packed into a complex logic blocks. Thus, the notion of logic gate and associated gate
delay becomes artificial and misleading. In this analysis, we are evaluating the use of
the logical effort method not only for the purpose of better delay estimation but also
for evaluation of different adder topologies and their impact on design of VLSI
adders.

The logical effort (LE) analysis [1] models the gate delay using gate characteristics
and its loading and compares the gate delay to �, the delay of a Fan-Out of 1 (FO1)
inverter. This latter delay is normally known for a given technology and can serve to
estimate the speed. When a gate is loaded, its delay varies linearly with the output
load expressed in terms of fan-outs. LE also accounts for the effect of circuit
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topology, by including path branching in the model. The delay estimation using LE
method is quick and sufficiently accurate.

In order to evaluate the efficiency and usefulness of LE we have chosen several
diverse adder topologies and compared the estimated delay with the one obtained via
simulation. The adders chosen for this analysis were: multiplexer-based adder (MXA)
which is implemented as a static radix-2 4-bit adder with conditional-sum in the final
stage [3]; Han-Carlson consisting of static and dynamic radix-2 adders [5][6]; Kogge-
Stone, static and dynamic radix-2, and dynamic radix-4 adder [7][8]; Naffziger’s
implementation of Ling’s adder [9] in a dynamic radix-4 topology [10]; and a Carry-
Look-ahead (CLA) adder implemented in dynamic radix-4 topology [4].

The multiplexer-based adder (MXA) takes advantage of its simplicity and speed of
transmission-gate multiplexer implementation [3]. The sums are generated con-
ditionally in groups of 4 bits. The carries to these groups are formed using radix-2
propagates and generates. The generate path is critical, passing through 9 stages
including the total of 7 multiplexers. Thus, the transmission-gate multiplexer speed is
a dominant factor determining the speed of this adder.

The Han-Carlson and Kogge-Stone adders use similar radix-2 structure as MXA.
However, they combine the carries with the half-sum signals in order to obtain the
final results. Direct CMOS implementation of generate and propagate logic had been
used, allowing usage of both static and dynamic gates. The Han-Carlson adder differs
from the Kogge-Stone adder by not creating all the carries from the radix-2 structure.
Instead, only even carries are created and odd carries are generated from even carries.
Therefore, in terms of logic stages, Han-Carlson uses one extra stage while Kogge-
Stone adder is equivalent in the number of stages to MXA.

Ling’s adder obtains high performance by exploiting wired-OR gate property of
emitter-coupled logic. With CMOS implementation, such advantage is lost. However,
it was shown in [10] that high performance could be realized using radix-4 propagates
and generates for carries and conditional sum.

The CLA adder allows fast implementation, especially the dynamic radix-4 type
[4]. CLA is a textbook example and it is most commonly used. However, with
dynamic radix-4 implementation, its large transistor stack and many stages made it
appear slow compared to other adders.

Using logical effort method for quick optimization, these adders were evaluated
and compared in [12] and extended next with the inclusion of radix-2 Han-Carlson
and radix-2 Kogge-Stone adders. Section 2 outlined the optimization conditions for
the adders. The delay of adders using logical effort method was discussed in section
3. The results were compared with H-SPICE simulation in section 4. The conclusion
of the work was given in section 5.

2   Optimization Conditions

All adders were optimized under the following conditions: maximum input size of
20�m, maximal allowable transistor size of 20�m and an equivalent load of 30�m-
inverter. These conditions were set to get reasonable transistor sizes and loads to an
adder.
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The wiring capacitance was included. It was computed using the unit-length wiring
capacitance and the 1-bit cell width. This width was determined from the preliminary
layout of the most congested bit cell. The wire length was determined from the
number of bits it spanned and the number of wires running in parallel.

Using logical effort method, the adders were optimized according to the critical
paths that were estimated from the adder topology. Delay effort in other paths was
computed from the critical one. The optimization process was applied recursively to
update the branch factors along the critical path. It finished after all transistor sizes
converged and the final result recorded the adder delay.

3   Delay Effort of Adders

The logical effort of gates was obtained from simulation. This adjustment was
necessary for two reasons: first, pMOS and nMOS driving capability vary with
technology, and secondly, better average per-stage delay can be achieved using the p-
n ratio in the range of 1.4-1.6. Thus, we needed to repeat the gate delay simulation in
order to accurately model the delay; the drain and source areas of transistors were

Fig. 1. Multiplexer-based carry select adder: diagram and circuits [3]
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included to match better with real layout. We used p-n ratio of 1.5 for the
performance reason. Nonetheless, all gates continued to show linear delay with fan-
out. In addition, to accurately model the delay, the domino gates were broken into
dynamic and static gates. First, the latter have different driving capability and needed
to size differently.  Second, domino gates can be very complex (for example, in CLA
and Ling adder, group generates and group carries drive multiple inverters at different
locations on its NMOS stack). Without such separation, it is very difficult to model its
delay accurately.

Fig. 2. Radix-2 Han-Carlson and Kogge-Stone adders: diagrams and circuits [5][6][7]

3.1   Results

The static radix-2 MXA consists of 9 stages and was implemented using static CMOS
(Fig. 1). The radix-2 structure was chosen so that 2-input gates could be used. The
generate signals were implemented with transmission-gate multiplexers, which were
controlled by propagate and their complementary signals. In [3], single-ended
propagate signals were implemented and inverters were needed to generate the
complement signals. To avoid this delay penalty, complementary propagate signals
were generated directly. The critical path was from bit-1 propagate through generate
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paths to the MSB sum. Along this path, the fan-out was slightly larger than 2.  The
logical effort optimization achieved the total delay of 55.8� (11.4FO4).

Fig. 3. Radix-4 Kogge-Stone adder: diagrams and circuits [7]

The radix-2 Han-Carlson adder (Fig. 2) realizes even carries with propagate and
generate signals of even bits. The odd-bit carries are generated at the end using even
carries. The critical path goes from bit 1 through the generate path to the MSB sum,
traversing 10 stages. The propagate paths had the equal number of stages but they
were loaded less heavily than the most critical generate path. The fan-out along the
critical path was less 2. The total delay was 62.5� (12.8FO4) and 55.8� (11.4 FO4) for
static and dynamic implementation.

The radix-2 Kogge-Stone adder is similar in architecture to the Han-Carlson. The
difference is that propagate and generate signals of all bits are created in Kogge-Stone
adder (Fig. 2). This results in 9 stages, one less as compared to Han-Carlson adder.
The cost, however, was in twice as many gates for propagate and generate signals and
doubling of the number of wires. The critical path went through the generate signals,
traversing 9 stages. The fanout was also less than 2. The total delay after optimization
was 57.6� (11.8FO4) and 42.6� (8.7FO4) for static and dynamic implementation. The
delay is better compared to Han-Carlson adder.

The dynamic radix-4 Kogge-Stone adder was implemented in only 6 stages, by
using redundant logic in propagate and generate stages and strobe signals for final
sum (Fig. 3). The cost was very high input and internal loading and large amount of
wiring between stages. In addition, dynamic stages that followed were slow NOR
gates. The critical path went through the generate path from bit 0 to the MSB sum.
The total delay is 30.1� (6.2FO4). This is the best delay seen � showing the advantage
of using fewer stages over its complexity.
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The dynamic radix-4 CLA was realized in 16 stages or 8 domino gates (Fig. 4).
The critical path was from bit 0 through the generate path and higher-bit carries to the
MSB of the sum. Fan-out of 3 was observed along generate and carry paths. The total
delay is 54.3� (11.1FO4) due to more loading and longer wires.

Fig. 4. Radix-4 CLA adder: diagrams and circuits [4]
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were implemented with faster gates to avoid becoming critical. The total delay is
43.9� (9.0FO4).

Fig. 5. Radix-4 modified Ling adder: diagrams and circuits [7]
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Table 1. Adder delays using logical effort method

Type Adder # Stages LE (�) # FO4

MXA 9 55.8 11.4
KS 9 57.6 11.8

S
ta

tic
HC 10 62.5 12.8

KS-4 6 30.1 6.2
KS-2 9 42.6 8.7
Ling 9 43.9 9.0
HC 10 47.9 9.8D

yn
am

ic

CLA 16 55.8 11.4

Fig. 6. Total delay from logical effort method and number of stages

4   Simulation Results

The worst-case delay of each adder’s critical path was simulated with H-SPICE using
the 0.18�m, 1.8V CMOS at 27�C temperature. The results obtained were presented in
Table 2.
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the per-stage delay difference was degraded to 1.4FO4 and 0.8FO4 for static and
dynamic implementation, respectively.
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nMOS ratio of 1.5 was used, the rising signal was faster than the falling signal.  So,
multiplexer did not fully switch until the rising control to the multiplexer. Therefore,
the multiplexer delay was always determined by the slow rising signal. It
corresponded to the worst-case delay, not the average.  Large errors were also seen in
radix-4 dynamic adders. They used high-stack nMOS and had many branches.
Therefore were harder to model accurately, especially on parasitic delay.

Table 2. Logical effort and simulation delay results

Type Adder
# Stages LE

(FO4)
HSPICE

(FO4)
HSPICE

(ps)
Diff.
(%)

KS 9 11.8 10.9 853.0 -8.04

MXA 9 11.4 12.8 1003 10.99
Static

HC 10 12.8 13.3 1036 3.49

KS-4 6 6.2 7.4 581 17.11

KS-2 9 8.7 9.2 717 4.82

Ling 9 9.0 9.5 742 5.34

HC 10 9.8 9.9 772 0.85

Dynamic

CLA 16 11.4 14.2 1107 19.3

Fig. 7. Total delay with H-SPICE and delay difference

Nonetheless, the relative performance among adders did not vary significantly. It
was realized that having less stages in critical path helped to improve delay. Although
less stage meant more complex gates that translated into worse per-stage delay, such
delay degradation was offset by more delay reduction due to fewer stages.

5   Conclusion
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consistent with simulation and are encouraging. They show that incorporating Logical
Effort into the analysis of VLSI adders can help find better adder topologies.
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