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ABSTRACT

As the complexity of VLSI circuits continues to increase, the need to test
for failures has become imperative. The problem of generating test to
desect failures on FET transistor networks has been unsolved for all but
simpie cases. In this paper we describe an effective method for computing
test for failures for FET switching networks. Here we define a function-
preserving, failure-preserving transformation of a switching network into
alogic network. There are efficient means for computing tests for failures
in lovic networks, specifically, the D-algorithm. Tests so computed for the
1iage logic network are automatically tests for failures in the original
switching network. In other words the logic network so generated not only
computes the same function; it also has the same failure-structure. Tests
fer the logic-network failures are computed by efficient test-generation
procedures, using the D-algorithm ( 1980 ). It is proven for the trans-
formation that a test for a stuck failure in the logic network is simultane-
ously a test for a short { or open ) for the corresponding switch in the
switching network. Run time for the transformation, from switching to
logic  network, increases linearly with the complexity of the switching
network, so that its run time can be neglected. A program SW2BOOL
of the algorithm (written in Pascal) clearly verify the claims as to correct-
ness and speed.

INTRODUCTION

Of the means of realization of function, logic circuits and switching
circuits, logic circuits are much easier to test, with e.g. use of the D-
algorithm: direct methods for switching circuits are semi-exhaustive.
However, the test for VLSI logic based on the logic representation
without the regard for the actual FET implementation is proven to be
inadequate ( 1979 ).

We define a structural mapping of each switching circuit into a logic
circuit, performing the same function and having the same failure char-
acteristics.  This mapping has linear complexity. We then compute a
test assemblage for this constructed logic-circuit image which is guar-
anteed to detect all of its (stuck) failures. We prove that these same
tests cover all transistor failures in the original switching circuits. We
use some new techniques to generate a minimal number of tests to cover
these failures. Thus the testing of switching circuits is reduced to the
testing of logic circuits.

DLEFINITION

A dogic circuit is a directed acyclic graph; on each branch is a binary
function of the branches directed toward it; branches with no branches

directed toward it are assigned binary variables; branches pointing no-
where are primary outputs; in addition, any branch may be designated
as a primary output.

A Switching circuit is defined by a graph, whose branches are of two
types. In one type, there is a switch which is open or closed depending
upon the value of a binary variable controlling it. In the other is an
inverter, which inverts the value, 1 or 0, of the signal on the input side
of the inverter. In general an inverter is never inserted in parallel with
switches, and only at a point where the graph necks down to one
branch. The switches are bilateral devices whereas the inverters are
unilateral. The switching circuit has two terminal nodes: Ground and
input side of the inverter. Therefore, the existence of a path connecting
the terminal nodes in the switching circuit means logical zero value at
the'inverter input i.e. logical one at the inverter output.

Direct computation of tests for failures in switching circuits has been
difficult. Here, an algorithm is given for "failure-equivalent” mapping
of switching circuits into logic circuits: it is a iterative and structural
mapping. We prove that tests covering stuck failures in the image logic
network also constitute tests for shorts and opens in the original
switching circuit. Shorts and opens of switches in switching circuits are
in one-to-one correspondence with stuck failures in equivalent logic
circuits.

EXAMPLE OF STRUCTURAL MAPPING

Consider the bridge circuit consisting of four nodes 2,3,4,5, and five
switches interconnected as follows (Fig.1.),
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We use the following notation to define a switch:

A switch with vertices a,b controlled by variable v is denoted v<a,b>.

A switching circuit is defined by a collection of such switches in such

notation: the description must also specify the (sets of) terminal nodes.

The function realized by such a switching circuit is defined by :
a<2,3>, b<2,4>, ¢<3,4>, c<4,5>, d<3,5>.

Assume that 2 and 5 are a terminal pair. We start arbitrarily with 2.

The switches contiguous to 2 are a<2,3> and b<2,4>. The first la-
belled function is

Fi=a<23> +b<—2,4>

The boundaries of this chain are 3 and 4 and their cofaces are
D*(3)=e<3,4>+d<3,5>
D*(4)=e<4,3>+c<4,5>

Those already in the chain, a<3,2> and b<4,2>, are not in the cofaces.
These cofaces are multiplied into the above expression, to produce

F,=a<23>(<34>+d<3,5>)
TELLC24> (<43 > +c<45>)
The boundary points of F2 are 4 and 3 (5 being a terminal node). Thus

the terms having 4 and 3 as boundaries are multiplied by their surviving
cofaces, namely ¢c<4,5> and d<3,5>:

F=a<23>(<34>(E<455)+d<355) "
+5<24>€<43>d<35>)+c<45>)
This is the final structural chain. The correspondin-g algebraic chain is:
F=a(ec+d)+b(ed+c)
a(ec+d)+bled+c)

The RLD logic expression ( 1980 ) corresponding to the above circuit
is as shown in Fig.2. :
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COMPUTATION OF TESTS BY
D-ALGORITHM FOR BRIDGE CIRCUIT

Computation by the D-algorithm yields the following tests for primary
inputs of the generated logic circuit ( Fig.3.):
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These represent tests both for each primary-input line stuck-at-1 and
-0, for the six input lines a,b.c.d,e in order. Clearly more reduction
could be achieved. for example. the test cubes for ¢ and d can be inter-
faced to produce a single test for ¢ or d stuck at 1. BTN

Referring to the original switching circuit, we see that DOI11 is a test
for switch a<2,3> stuck either way, for b=0 blocks either path be-
tween the terminals. Likewise OD111 allows only a path through b be-
tween terminals, checking failure both ways on b<2,4>. Similarly
11D01 blocks all paths except those through c<4,5>."

It is clear that the number of tests needed to test the switches in the
given example is less then what was ottained by using our procedure for
test generation for FET switching circuits via failure-preserving trans-
formation to logic circuits ( Fig.4. ).
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However, our objective is not to produce the minimal test but to assure
the coverage of "transistor-faults”. In this case the excess test vectors
might be beneficial for the coverage of the physical defects not covered
by the transistor faults ( 1979 ).

METHOD AND PROOF

Assume that there is just one pair of terminal nodes. The computation
begins with one of these, say 4.



Let switches @ < 6,1y > ,...,a, < t;,u, > be all the switches contiguous
to £, - We form the sum of these switches:

ap <t >+ + a, < tu>

Having constructed the algebraic expression for n-1 nodes, sclect a
boundary node which is not a terminal node; multiply the part of the
cxpression where it appears by the sum of all branches attached thereto
which are not repeats, in the same chain of switches.

Theorem

The above method correctly computes an assemblage of tests for a switching
circuit, of whatever size, which cover all transistor-shorts and -opens, all
stuck switch failures, of the switching circuit.

Proof

The proof is by induction. Tt is evident that the theorem is true for all
switching circuits SW; consisting of exactly one switch - a switch is a
tranch together with a binary variable v controlling the connection or
disconnection of its vertices (nodes).

Assume then that the theorem holds true for all S¥,

naving less than n switches. Consider now any switching circuit SW,

consisting of exactly n switches. Consider the initial terminal a. Let
there be k switches attached to a. If k=n then SW, consists of n
switches in parallel.

Detach one of these switches A from a: what remains has n-1 switches.
Calt it SW,_, . Therefore, by hypothesis, the above construction - the
mapping and the application of test-generation methods, e. g. the D-
algorithm interlaced with TestDetect ( 1980 ) to the image-Boolean-
araph - yields a set of tests covering the short- and open-failures of
Sw, .

Let the functional expression for SW,_; be denoted F(SW,_,), Consider
now the segment of the deleted branch: call it § . The segment of a
branch is the subgraph of all branches and nodes connected, directly
or indirectly to the branch (or node). Call it S;. Clearly S, has less than
n branches and therefore, by hypothesis, the method correctly generates
a test set covering the assumed failures of S; . Call it 7; . Let the set of
tests covering SW,_, be denoted 7,_, . Let the functional expression for
SW,_, be denoted F,_; . Now consider the functional expression F, for

the original switching circuit SW, . Clearly this may be expressed in the
form

Fo=F_+F

Also clearly therefore the piecewise method of computing a failure
cover T, for SW, :

T,=T,1+T;
is a genuine cover for SW,.

Q.E.D.

Example of Proof

The following example shows how the proof is put together.

a<2.3>, b<2,4>,¢<2,5>,d<3,4>, e<4,5>, (<3.6>, g<4.6>,
h<5,6>

It 1s assumed that 2 and 6 are the terminal nodes.

Instead of forming an expression having three initial terms, for the
coface of terminal 2, we shall start with two, and lcave the other for the
inductive step. Thus our first expression is

Gi=b<24>+c<25>

The usual multiplication within this expression, but it always remains a
sum of the above two terms, thus,

Gy=b<24>(d<43> +e<45> 4g<4,6>)

+c<25>(<54>+h<56>)

Gy=b<24>d<43>f<36>+e<45>h<56>
+g<4,6>) +c<25>(<54>d<43>f<36>

+g<46>)+h<56>)

On the other hand the expression for the switch left out, a<2.3> . is

Hi=a<23>(d<34>+/<45>)

IMPLEMENTATION AND RESULTS

The algorithm was implemented as a Pascal program called SW2BOOL.
SW2BOOL reads an input file consisting of the description of the FET
switching circuit. It produces a boolean logic description ( Regular

Logic Design RLD ), ( 1980 ). FET description is similar to the one
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Fig.5.

used in the SPICE ( circuit simulation ) program deck. Both gate-
oriented and pass transistor circuits can be handled.

We usced the program (o run on numerous examples of various sizes.
The largest circuit consisted of an 32-bit wide ALU and other were the-
circuits of smaller sizes but different in their functions and complexity.
The FET to logic conversion time was found to be a linear function of
the number of transistors, as shown in Fig. 5.
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In general, the conversion time is small compared to the test pattern
generation time.

CONCLUSION

Test gencration for failures in FET - switching circuits , for small number
of FETs , has been possible only by manual methods: -the
combinatorics grows exponentially with size of circuit for direct ap-
proaches. For logic circuits, on the other hand, extant methods are
satisfactory and widely practiced.

In this paper we define a transformation from switching- to logic-circuit
which preserves function and is Jailure-preserving, i.e. there is a one-to-
one correspondence between shorts and opens of the switching circuit
and stuck-1 and stuck-0 failures in the corresponding logic circuit.

We demonstrate that this transformation is linear, in that, the run-time
doubles with doubling the size of the underlying switching circuit. The
conversion time is negligible compared to the time used for the test
generation. Thus the complexity of test generation using this method
is comparable to that for the logic circuits.

We use some recent improvements in the D-algorithm which substan-
tially reduces its run-time as well as the number of tests.
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