70 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. |, JANUARY 1982

An On-Line Square Root Algorithm
VOJIN G. OKLOBDZIJA anp MILOS D. ERCEGOVAC

Abstract—In this correspondence a systematic derivation of an on-line
square root algorithm is presented. The algorithm operates on variables rep-
resented in the normalized radix r floating-point system in a digit-by-digit
fashion with an on-line delay of 1. The approach used in deriving the square
root algorithm is described in detail. The basic characteristics of hardware-level
implementation are also discussed.

Index Terms—Floating-point square root algorithm, modular LSI/VLSI
implementation, on-line arithmetic, redundant number systems.

[. INTRODUCTION

An on-line arithmetic operation is performed in a digit-by-digit
manner beginning with the most significant digit. At each step only
one additional digit of the input variables is required in order to
generate the next digit of the output variable. In general, an on-line
algorithm may require the first 4 operand digits to be known in order
to start the operation. This number 8, called the on-line delay, is a
small positive integer between 1 and 4 for the basic arithmetic oper-
ations [15], [11].

On-line arithmetic has several advantageous features over con-
ventional full-precision arithmetic. First, a sequence of arithmetic
operations can be performed faster by overlapping the operations at
the digit level. For example, n operations which must be performed
in the sequential order require only m + 27, 0; digit steps for an m
digit precision instead of mn digit steps. Second, the on-line arithmetic
unit has a minimal input/output bandwidth of one digit per variable.
This feature enhances the modularity of implementation and reduces
the interconnection complexity, which’makes the algorithm conve-
nient for LS1/VLSI implementation. The use of on-line units is at-
tractive in array and other concurrent computer system organizations.
The on-line algorithms provide also a simple approach for achieving
variable precision computations. The significance monitoring [4] can
also be directly incorporated in on-line arithmetic. Finally, some
low-cost error checking codes [16], [17], defined for serial arithmetic,
can also be efficiently applied in on-line algorithms.

There have been several algorithms developed which satisfy the
on-line property with respect to the operands and the result. Possibly,
the first such attempt was done in [1] for a conventional, right-to-left
multiplication algorithm. Multiplication and division in the on-line,
left-to-right manner were developed in [15] and their implementation
together with addition and subtraction algorithms considered in
[11].

Common to all on-line algorithms is the use of redundancy in the
number representation. The redundant number representation has
often proved useful for speeding up arithmetic operations [2], [3],
[5], [8], [14] and its application in the on-line algorithms is essential.
In a nonredundant system even a simple operation like addition would
have a significant on-line delay due to the carry propagation. By al-
lowing redundancy in the number representation it is possible to limit
the carry propagation to one {or two) digit positions and thus the

Manuscript received March 7, 1980; revised June 29, 1981. This work was
supported in part by the Department of Energy under Contract DE-AS03-
76SF0034 P.A. and the ONR under Contract N00014-79-C-0866.

The authors are with the Department of Computer Science, University of
California, Los Angeles, CA 90024.

0018-9340/82/0100-0070$00.75

left-to-right computations are possible. A general evaluation method
[8] is also characterized by on-line property. The results described
here represent a generalization of a binary square rooting algorithm
[9].

The square root algorithm is derived under the following require-
ments [8].

1) The algorithm is on-line with respect to the operand digits. At
some step j of the computation only those operand digits up to and
including jth are used for performing the computation and for pro-
ducing the result digit.

2) The algorithm is on-line with respect to the result digits. The
most significant digit of the result is generated first. The result digit
produced at step j is not affected by the digits produced at the sub-
sequent steps k (k > j).

3) The time required by the computational step is invariant and
the only primitive operations are carry-free addition and multipli-
cation with single-digit multipliers.

4) The implementation requirements of the unit are compatible
with the constraints of LSI/VLSI technology, i.c., it is modular with
high gate/pin ratio.

II. DERIVATION OF THE ALGORITHM
The argument
m .
X=3 xipF (1)
i=1

is a positive number in the range [#~7, r P 1) and represented in the
redundant number system with the digit set

D, =l=p,--,=1,0,1,--,p}, rj2<p<r.

The scaling factor p is a positive integer which will be determined
later.

At the jth step of the algorithm the argument is represented as
Xj = Xj._] + x,;+jr”‘5“f (2)
where 6 > 0 is the on-line delay. Initially,

Xo= 2 xir™! (3)

and at theend X,,, = X.
The result

m .
Y=75 yr™

=1

is in the range [r~7/2, r(1=r¥2), The on-line representation of the
result is

Yi=Yityr~, j=12-.m (4)
where Yy = 0.
Recursion

The recursion is obtained in the:usual way from the scaled partial ~
remainder

Ry =ri[X; — Yj] (%)
so that
Ry = rRj_1 + x54jr™% — y;[2Yjy + yjr~/] 6)
=rRj_1 + x50 — y;[Y;—1 + 1)) j=
Initially, Ry = Xo.

1,2, ,m.

© 1982 IEEE

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982 71

Since the partial remainder is bounded
|R| <c<1 (7

the convergence of the algorithm is assured. The error is defined
as

e=|X:,,/2—Ym| (8)

and it satisfies the following condition:
| e] = %r""*f’/z. 9)
As will be seen later, the scaling factor p = 2 and

| e S%r‘”’“. (10)

Selection Procedure

The algorithm requires a suitable procedure for selecting the result
digits in on-line manner. In this section we discuss an approach in
defining selection rules. The selection of the result digit y; is based
on the comparison of the partial remainder R;_.; with some suitable
comparison constants. In particular, we show that a low-precision
estimate of the partial remainder can be used [2], [3], [5], [8], [14]
and that the required constants are relatively simple to obtain.

In order to define the selection function we consider the intervals
in which the partial remainder R;—; can be found for different values
of the output digit y;. The intervals are defined as

Iy = lax, b

These intervals must satisfy the following conditions [9].
1) The continuity condition:

-p <k <p.

akak_1 —p<k5p. (11)
2) The containment condition:
a_, < R;<b, (12)

The selection intervals are easily obtained from the recursion for-
mula (6) by substituting the boundary values of | R;| = cand y; =
k for—p <k < p:

- k .
4 =—S—u+=[2Y_) + kr] (13)
r r
and
¢ k

bk=——u+—[2Yj_1+kr”j] (14)
r r

where
u= -x6+jr_6-l.

In order to satisfy the continuity condition (11), there must exist
a nonzero overlap A between the adjacent intervals Iy and Ix4y. In
this overlap region the choice of the result digits & and k + 1 is equally
valid.

Specifically, the overlap Ag_ x between the intervals I and Jx—;
is

(16)

for 1 —p < k < p, where Y§* denotes the value of Y; with k selected
as the digit in the jth position.

The minimum overlap occurs for k& = p. Let the minimum positive
value for the overlap be

1 .
Ap—i g = by—y — ai = =[2c = 2V + r 7]
r

A=rt 17)

From the continuity condition (16) and (17) we obtain that in the
worst case the following relation must hold:

1. .
;[25- —2YW il 2zt (18)

In order to guarantee a nonnegative overlap A, the maximum value
of the result ¥ should not exceed the partial remainder bound c,
1.e.,

Yimax < C.

(19)

Since Ymax = [Xmax)'/2 and ¢ < 1, it follows that the argument X
should be shifted initially for at least one digit position to the right -
in order to satisfy (19). This implies that the range scaling factor p
is greater than one. Since in general the initial scaling of the argument
increases the on-line delay, we select p = 2. As will be seen later, there
is no time penalty for this preshifting of the argument.

The minimum on-line delay & and the minimum overlap r~ are
determined as follows. The containment condition (12) implies that
the selection intervals should contain completely the range of the
partial remainders. Therefore, the maximum value of R; should
satisfy the following condition:

Ri=rc—plY, . +YPl+ruzc (20)
In the worst case xs4,; = p and
cSK[Y;o +YP —r7d (21)

where K = p/(r — 1) is the redundancy factor. Equation (21) shows
that in order to minimize the on-line delay 6 the minimum value of
the result and, hence the argument should be as large as possible. This
reasoning is consistent with our choice of p = 2. The other expected
conclusion from (21) is that more redundancy leads to a faster algo-
rithm, i.e., a smaller on-line delay.

Since ¢ > 0, and p = 2 it follows that

Win = 271 > 10 (22)
which indicates that the minimal on-line delay is Omin = 1.
From (18) and (21) we obtain
riFl 4t < c(2 - %) —(p—Dri. (23)

Again, maximal redundancy in the number representation would
allow the choice of a smaller value for ¢. This means that we could
truncate the remainder to fewer digits in the comparison process and
obtain a faster algorithm. For this reason the algorithm is designed
to operate with the maximally redundant digit set which, in addition,
has an advantage in the fact that no input conversion is necessary
when the argument is in the conventional form. In the limit (j = «),
forK=1landd=1

— 3 rl/2 — 1

r r2

(24)

The smallest t we can choose is ¢ = 2. For t = 2, the equation (24)
reduces to r!/2 > 2 and it will be satisfied for any radix r = 4. For
radix r = 2, a somewhat different algorithm is proposed in [9].

We are now able to define the selection procedure to be used in the
algorithm. In each overlap region we choose a value By, as close to the
overlap midpoint as possible. The selection intervals and these com-
parison values are indicated in Fig. 1.

By = Aij_l + D;J’UH) —u (25)

and .

Boy=—AY;—y + Dpr=UtH —u fork=1,-""p
where A; = (2k — 1)/r and Dy = k% — k + 1/2. These coefficients
require a small number of digits. A most important consequence of
the use of redundancy is that only estimates of By’s need to be known.
We utilize one half of the overlap Ag_ 4 for these estimates and

another half for approximation of the partial remainders. For ¢ = 2
we define these estimates to satisfy the following conditions:

| B, — Bk| < r-3 (26)
and

| R — R;| <r3. 27

72 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

o Iy I 1
a U" a pH»] b pb-p 30[. a 1!:0 by dk'1l‘ ﬂk-l by bk .bp
y V A 4 4 ;
Apa L J A01 L Ak"'k_l‘l_, _[
ey i
-pt h
range of R .,
(a)
1B, By

2-MAX [|By By (2r3

L 1 ..

2. MAX [R; él\r 2r3
(b)
Fig. 1. (a) Sclection intervals /k and the overlap regions Ak — 1 k- (b)
Comparison process between truncated selection constants By and truncated
partial remainder f?j.

The selection function is now defined as

k By <R-1 < By

pi=S(R-)={ 0 B <R <B (28)
—k B <R_ <B4
where

By =AY;—1+Dp—u (29)

and

B_y=-AYVio+ Dy —u

and

Yy =1r3Y;0r 3 U= Xjpr? (30)

i.c., the partial result is truncated to three most significant digits. The

term
Dk = | r3(Der=i=1r—3 (31)

can be neglected for j > 4.

I1I. ALGORITHM

As mentioned in Section 11, in order to assure the nonzero positive
overlap between the selection intervals, the input X is shifted for one
digit position to the right. Therefore, X is in the range

X [r2 7" (32)
and the output Y is in the range
Y — [r=1, r=V2), (33)

In the case of a normalized floating-point representation system
the following adjustments are performed. Let the argument whose
square root we seek be)

Z = zrk:

34
and the result

W = W"EW = (Z 1/2)]‘EZ/2. (35)

Since the exponent E,, should be an integer, the following corre-
spondence between the floating-point argument (result) and the input
X (the output Y) is defined.

i) E, even: The argument fraction z is shifted two positions to the
right in order to satisfy (32) and obtain an integer exponent.

Z = (zr=)rE:+2 (36)
and
W = {r(zr=2)1/2)rEs/2, 37)
Therefore,
X1=x,=0 (38)
Xi = Zi—n fori = 3,4, sm+2
Xm+3 = 0
and
Wi = Vit fori=1,2,---,m;, E,=E.]/2
il) £, odd: In this case
7 = (zr=V)rEetl (39)
and
W = [(zr_l)'/z]r(Ez+l)/2.
Therefore,
x;1 =0 (40)
X; = Zi- fori=2,3,---,m+1
Xm+2 = Xm+3 = 0
and
w; =y, fori=1,2,-,m; E,=(E;+)/2.

We how state the on-line square root floating-point algorithm.
S-Algorithm
1) [Initialization]
Wee0:R<z,r2 K, = ({:Z +1)/2: E, odd
E. /2 E, even.

2) [Recursion]
Forj=1,2,---,mdo:
2.0 fork=1,""p
Biy=+AW+ D —u
where: D'y = | r3(Dyr=" 1) 3 u < zj4r 3

2.2) w; < S(R, B)
23) w—w+wri

R~ rR+ zjyyr=2 = 2Ww; — wiri.
3) [End]

W = wrkw

where R is a scaled remainder truncated to 3 most significant digits,
By is the selection constant as defined in (29), and
if E; is even

i=y
i+ 1 if E, is odd.
Note that the next w is generated by concatenating the jth digit w;
to the right of the present w. The semicolon (;) separates operations

that can be performed concurrently. Two examples are shown in Figs.
2 and 3.

IV. IMPLEMENTATION CONSIDERATIONS

The proposed on-line algorithm has two characteristics important
for a modular implementation in LSI/VLSI technology. First, a small
number of inputs and outputs is needed because of the digit-by-digit
mode of operation. Second, the primitive operations (limited carry/
borrow propagation addition/subtraction and concatenation) can
be efficiently implemented in a modular fashion. Thus, an imple-

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

{r=10, p=9)}

z = 0.980738946%107 13

VALUE OF Z = 0.979322946%10 13
\ - 0.3129413596826%107°

13:23: K :atk}gt(ku);"’j: v §E=\F'w

e T T T 606 T = 1 = " T% 1 =

| 0 | | 00 |) | | |

: 1 I 9 | o0.08 \‘ 0.057 : 0.117 } 3 { 0.3 : 1.294 1078 "

{ 2 |‘ 8 0.19 } 0.030 : 0.092 " 1 ‘I 0.31 } 2.941 1072 :

|‘ 3 ‘\ o1 -0.039 { 0.162 : 0.225 I 3 I 0.313 ‘I -5.864 ‘“!

‘\ a : -7 1 o0.2865 : ~0.034 : -0.969 : -1 : 0.3129 I 4.135 10'“:

l 5 l 3 0.075 I 0.226 ‘\ 0.228 } 4 ; 0.31294 : 1.359 10“12:

: 6 : -8 | 0.220 : 0.022 = 0.084 |‘ 1 |‘ 0.312941 : 3.596 10‘13}

I 7 : 9 | ~0.259 { 0.214 I 0.276 % 4 1 0.3129414 I -4.031 10‘“1‘

{ 8 1 4 | -0.022 1 -0.024 : -0.286 : -4 ‘I 0.31294136 1 ~3.173 10“””\

‘\ 9 t 6! ~0.216 } -0.031 : -0.031 : 0 : 0.312931360 l -3.173 10‘16=

;10 i o i - i ~0.156 ; -0.218 I -3 i 0.3129413597 | -1.739 10717!

w* - partially converted on-line representation of the result.

Result:

W = 0.3137414707 *(10)"°
which corresponds to the value 0.3129413597 *(1())“6
Fig. 2. Square root example for radix r = 10.
(r=256, =255}
Z = .124 245 023 146 087 235 189 000 ‘(256)_3
VALUE OF Z = 2.909390975835 *10™°
\|Z = 1.705693693438304 '10-4

1 | N | N] N] []
I3 1 2z, | R | B, | Bt (k+1) bowy | =\[Z - w |
N | -k | A N |
T T T T T T T 1
{o : - } 1.892089 1073 I - : - } - : - :
ll I 124 : 1.545715 1072 : 1.671493 1073 : 2.007186 1073 } 11 : 2.7226 1076 :
I 2 : 245 } -2.803039 1072 : 1.539605 1072 : 1.573723 1072 I 46 : -1.9124 1078 {
l 3 : 23 I -1.196694 1072 : -2.781313 1072 I -2.815425 1072 : -82 I ~3.1890 10'11f
}4 { 146 { ~5.606698 102 : -1.177447 1072 l -1.211561 1072 : -35 } -5.8243 10'14:
: 5 : 87 : -3.442462 1072 : -5.301658 1073 l -5.642797 1073 : -16 : -1.3999 10‘15:
1 6 : 235 : 1.066394 1072 { -3.429571 1072 l -3.463685 1072 : -101 : 1.6805 10‘18}
} 7 : 189 I 2.269325 1072 } 1.040473 1072 : 1.074587 10772 1 31 : 0.0000 :
ia i 0 ; - ; 2.268435 1072 i 2.302549 1072 : 67 { ~1.3552 10"20{
Result: W = 0. 011 046 082 035 016 101 031 067 '(256)_1 which

corresponds to the value 0.705693693438304 ‘10“4

Fig. 3. Square root example for radix r = 256.

73

74 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982
2 y
EXP (2) SYNCjp, " w2
0 [2 SR . ’
r I
: I
>——: Rst Tin * :
B et e | |
Eoe SYNC |- W, Ege Min + :
l ‘ﬂ t t Tout O‘_,;_a O Tin
1 1 | b
e S U J
w2
Exp (W) SYNCout "(V)n
Fig. 4. Organization of the on-line square root unit. __‘_;__ a
Zin1 Mout ()4—#——-6 | MOET -0 Miq
% i
a W,
2ww e)
R’
b f .
- . Number of wires: w !
* o7 a = logyrtl
c ADDER b= 2logyr
L ; 2 3
-0 T - d i o
/ n e = d{logyr+l) W, £,p-00
w e IEVEI Fig. 6. Organization of the recursion module (RM).
] a a
DsB | AK the multiplier depends also on the time/complexity tradeoffs and
¥ could consist of the table look-up for the radix r of the moderate value.
¢ N Concatenation is performed by selecting the appropriate input for
¢ R the digit w; to the redundant adder block. Multiplexing to the ap-
¢ . propriate digit position is performed according to the exponent
MULT —O Min odd/even signal E,, and step j, i = i(E,e, j).
The precision of the whole unit depends on the number of RM;
Number of wires: c J modules involved in computation. With n modules 2(n + ¢ + 1) digits
a = logyrel . of the result could be accurately computed.
b = 2logyr i The difference between SM and RM modules is in digit select block
¢ = 3(logyr+l) w (DSB), which does not exist in RM modules. Also, z;4 input exists
a only in the SM module which does not have Ty and My, lines. RM
J) 8 module has approximately Slog,r + 9, and SM module has 4log,r

Wi Eoe
Fig. 5. Organization of the selection module (SM).
mentation can satisfy easily the main LSI constraints: high gate to
pin ratio and regularity in the layout. A complete unit is obtainable
by cascading the desired number of basic modules. The recursion time
is not affected by the number of modules due to the use of a redundant
number representation system. In particular, the low input/output
count reduces drastically the number of off-chip drivers that usually
require large silicon area.

The unit that implements the algorithm (Fig. 4) consists of three
basic modules as follows.

1) Exponent module, which calculates the exponent of the result
Exp(w), and provides exponent odd/even signal (E,,) to the other
modules indicating the proper selection of i. This module also provides
clock (Clk), synchronization (SYNC), and reset (Rst) signals to the
other modules.

2) Selection module (SM) (Fig. 5) is ¢ + 1 digit wide and it per-
forms the algorithm on the ¢ + 1 most significant digits. This module
selects the result digit w; which is passed to the subsequent mod-
ules.

3) The recursion module RM; is shown in Fig. 6. Each one of these
modules is identical in its structure and is d digits wide. It consists
of the d-digits slice of the multiginput limited carry/borrow propa-
gation adder [6] and multiplier which generates the slice of the
product w;w. It has four input/output one digit wide lines for transfer
digit from/to the adder and multiplier T and M, respectively. The
inputs to the module are w; and E,,.

All registers in the RM modules are of d(logyr + 1) bits. The
multiplier block in RM module consists of 4 X 1 digit multiplier slice
with M, and M, digits transferred from the last significant module
to the most significant module, respectively. The implementation of

+ 8 input/output lines.

The computation is performed according to the S algorithm. The
multi-input redundant adder computes the partial reminder R” = R
+ u which is compared to the selection constants B’ = By + u in the
DSB block. The input digit z;+, is fed to the select module only in the
r~2 position of the redundant adder. Partial reminder R’ is formed
in two addition steps using CSA adder tree.

Comparison of the most significant r + 1 = 3 digits of the partial
reminder R’ to the 3 digits of the selection constants B’ is performed
in the DSB block of the select module SM. Selection and generation
of selection constants B’ is performed by table look-up and/or suc-
cesive approximation depending on the value of the radix and time/
hardware complexity tradeoffs.

V. CONCLUSION

An on-line floating-point algorithm for the computation of the
square root is presented. The algorithm requires the use of a redun-
dant number system in representing the result fraction, while for the
exponent a conventional representation suffices. The algorithm has
a minimal on-line delay of 1 and it is developed for a general radix
r. The basic modules (RM and SM) are suitable for implementation
in LSI/VLSI technology since they use only simple operators and very
few external interconnections. For small radices, the selection be- -
comes very simple and it can be incorporated in the RM module. The
fractional unit is a one-dimensional cascade of RM modules with a
few intermodule connections. For example, given d-digit wide RM
modules and the fraction precision of n digits, the cascade consists
of no more than n/2 RM modules. Due to the on-line nature of op-
eration, higher even degree roots can be computed efficiently by

.cascading on-line square root units.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1,

{1
(2]
(3]

(4]
(5]
(6l

(7

(8]

(9]
[10]

REFERENCES

A. J. Atrubin, “A one-dimensional real-time iterative multiplier,” JEEE
Trans. Electron. Comput., vol. EC-14, pp. 394-399, 1965.

D. E. Atkins, “Introduction to the role of redundancy in computer
arithmetic,” Computer, vol. 8, pp. 74-76, June 1975.

, “Design of the arithmetic units of llliac I1I: Use of redundancy
and higher radix methods,” IEEE Trans. Comput., vol. C-19, Aug.
1970.

A. Avizienis, “On a flexible implementation of digital computer arith-
metic,” in Proc. IFIP 1962, pp. 664-668.

, “Signed digit number representation for fast parallel arithmetic,”
IRE Trans. Electron. Comput., vol. EC-10, pp. 389-400, 1961.

R. T. Borovec, “The logical design of a class of limited carry-borrow
propagation adders,” M.S. thesis, Dep. Comput. Sci., Univ. of Hlinois,
Urbana, Rep. 275, Aug. 1968.

M. D. Ercegovac, “A general hardware-oriented method for evaluation
of functions and computations in a digital computer,” [EEE Trans.
Comput., vol. C-26, pp. 667-680, July 1977.

, “A general method for evaluation of functions and computations
in a digital computer,” Ph.D. dissertation, Dep. Comput. Sci., Univ. of
Illinois, Urbana, Rep. 750, June 1975.

, “An on-line square rooting algorithm,” presented at 4th IEEE
Symp. Comput. Arithmetic, Santa Monica, CA, Oct. 1978.

I. T. Ho and T. C. Chen, “Multiple addition by residue threshold
functions and their representation by array logic,” IEEE Trans. Com-
put.,vol. C-22, pp. 762-764, Aug. 1973.

M. J. Irwin, *“An arithmetic unit for on-line computation,” Ph.D. dis-
sertation, Dep. Comput. Sci., Univ. of Illinois, Urbana, Rep. 873,
1977.

G. Metze, “Minimal square rooting,” IEEE Trans. Electron. Comput.,
vol. EC-14, Apr. 1965.

V. G. Oklobdzija, “An on-line higher radix square rooting algorithm,”
M.Sc. thesis, Univ. of California, Los Angeles, June 1978.

J. E. Robertson, “A new class of digital division methods,” IRE Trans.
Electron. Comput.,vol. EC-7, pp. 218-222, Sept. 1958.

K. S. Trivedi and M. D. Ercegovac, “On-line algorithms for division and
multiplication,” IEEE Trans. Comput., vol. C-26, pp. 681-687, July
1977.

A. Avizienis, “Arithmetic error codes: Cost and effectiveness studies
for application in digital system design,” IEEE Trans. Comput., vol.
C-20, pp. 1322-1331, 1971.

A. Gorji-Sinaki, “Error-coded algorithms for on-line arithmetic,” Ph.D.
dissertation, Dep. Comput. Sci., Univ. of California, Los Angeles, Rep.
CSD-810303, Feb. 1981.

JANUARY 1982

75

