
Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 1

Modern Microprocessor
Architectures:

Evolution of RISC into Super-Scalars

by

Prof. Vojin G. Oklobdzija

November 10, 1999Prof. Vojin G. OklobdzijaISSCC’97 Tutorial November 10, 1999 slide 2

Outline of the Talk

1 Definitions

1 Main features of RISC architecture

1 Analysis of RISC and what makes RISC

1 What brings performance to RISC

1 Going beyond one instruction per cycle

1 Issues in super-scalar machines

1 New directions

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 3

What is Architecture ?

1 The first definition of the term “architecture” is due to Fred
Brooks (Amdahl, Blaaw and Brooks 1964) while defining
the IBM System 360.

1 Architecture is defined in the “principles of operation”
which serves the programmer to write correct time
independent programs, as well as to an engineer to
implement the hardware which is to serve as an execution
platform for those programs.

1 Strict separation of the architecture (definition) from the
implementation details.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 4

How did RISC evolve ?

1 The concept emerged from the analysis of how the
software actually uses resources of the processor (trace
tape analysis and instruction statistics - IBM 360/85)

1 The 90-10 rule: it was found out that a relatively small
subset of the instructions (top 10) accounts for over 90% of
the instructions used.

1 If addition of a new complex instruction increases the
“critical path” (typically 12-18 gate levels) for one gate
level, than the new instruction should contribute at least 6-
8% to the overall performance of the machine.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 5

Main features of RISC

1 The work that each instruction performs is simple and
straight forward:

the time required to execute each instruction can be
shortened and the number of cycles reduced.

the goal is to achieve execution rate of one cycle per
instruction (CPI=1.0)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 6

Main features of RISC

1 The instructions and the addressing modes are carefully
selected and tailored upon the most frequently used ones.

1 Trade off:

 time (task) = I x C x P x T0

I = no. of instructions / task

C = no. of cycles / instruction

P = no. of clock periods / cycle (usually P=1)

T0 = clock period (nS)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 7

What makes architecture RISC ?

1 Load / Store : Register to Register operations, or
decoupling of the operation and memory access.

1 Carefully Selected Set of Instructions implemented in
hardware:

- not necessarilly small

1 Fixed format instructions (usually the size is also fixed)

1 Simple Addressing Modes

1 Separate Instruction and Data Caches: Harvard
Architecture

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 8

What makes architecture RISC ?

1 Delayed Branch instruction (Branch and Execute)*
also delayed Load

1 Close coupling of the compiler and the architecture:
optimizing compiler

1 Objective of one instruction per cycle: CPI = 1

]Pipelining

*no longer true of new designs

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 9

RISC: Features Revisited
1 Exploitation of Parallelism on the pipeline level is the key

to the RISC Architecture

Inherent parallelism in RISC

1 The main features of RISC architecture are there in order
to support pipelining At any given time there are

5 instructions in different stages of
execution

IF D EX MA WBI1:

I2:

I3:

I4:
I5: IF

D

E
X

MA

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 10

1 Without pipelining the goal of CPI = 1 is not achievable

1 Degree of parallelism in the RISC machine is determined
by the depth of the pipeline (maximal feasible)

RISC: Features Revisited

IF D EX MA WB IF D EX MA WB

I1 I2

Total of 10 cycles for two instructions

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 11

RISC: Carefully Selected Set of Instructions

1 Instruction selection criteria:
only those instructions that fit into the pipeline structure are

included

the pipeline is derived from the core of the most frequently used
instructions

Such derived pipeline must serve efficiently the three main classes of
instructions:

, Access to Cache (Load/Store)

, Operation: Arithmetic/Logical

, Branch

IF D EX MA WB

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 12

Pipeline
Instruction Address Register:

IAR

Instr.
Cache

Instruction Register:
IR

Instruction Fetch

Register
File

Decode

φ0 φ1 φ0 φ1 φ0 φ1

Data
Cache

Register
File

φ0 φ1 φ0 φ1

Decode Execute Cache Access Write Back

Data Forwarding

ALU

WRITE READ

Data RegisterAddress Reg. / Staging Reg.

WA

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 13

RISC: Support for the Pipeline

1 The instructions have fixed fields and are of the same size
(usually 32-bits):
This is necessary in order to be able to perform instruction decode

in one cycle

This feature is very valuable for super-scalar implementations

(two sizes: 32 and 16-bit are seen, IBM-RT/PC)

Fixed size instruction allow IF to be pipelined (know next address
without decoding the current one). Guarantees only single I-TLB
access per instruction.

1 Simple addressing modes are used: those that are possible
in one cycle of the Execute stage (B+D, B+IX, Absolute)
They also happen to be the most frequently used ones.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 14

RISC: Operation: Arithmetic/Logical

IAR

Instr.
Cache

IR

Instruction Fetch

Register
File

Decode

φ0 φ1 φ0 φ1 φ0 φ1

Data
Cache

Register
File

φ0 φ1 φ0 φ1

Decode Execute Cache Access Write Back

ALU

WRITE READ

Operation Destn.Source1 Source2

WA

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 15

RISC: Load (Store)
1 Decomposition of memory access (unpredictable and multiple cycle

operation) from the operation (predictable and fixed number of cycles)
RISC implies the use of caches

IAR

Cache
Instr.

IR

IF

Register
File

Decode

Data
Cache

DEC
E-Address
Calculation Cache Access WB

ALU

WR RD

Displ. E-Address = B+Displacement

Register
File

Data from Cache

Base

WAD-S

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 16

1 If Load is followed by an instruction that needs the data, one cycle will
be lost:

ld r5, r3, d

add r7, r5, r3

1 Compiler “schedules” the load (moves it away from the instruction
needing the data brought by load)

1 It also uses the “bypasses” (logic to forward the needed data) - they are
known to the compiler.

RISC: Load (Store)

dependency

IF D Addrs C-Acc write

IF D EX MA WB

ld

add

data needed

data available from cache

data written to register

data available from the register file

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 17

RISC: “Scheduled” Load - Example
Program to calculate:
 A = B + C
 D = E - F

ld r2, B
ld r3, C
add r1, r2, r3
st r1, A
ld r2, E
ld r3, F
sub r1, r2, r3
st r1, F

Sub-optimal:

data dependency:
one cycle lost

data dependency:
one cycle lost

Total = 10 cycles

ld r2, B
ld r3, C
ld r4, E
add r1, r2, r3
ld r3, F
st r1, A
sub r1, r4, r3
st r1, F

Optimal:

Total = 8 cycles

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 18

1 In order to minimize the number of lost cycles, Branch has to be
resolved during Decode stage. This requires a separate address adder
as well as comparator which are used during Decode stage.

1 In the best case one cycle will be lost when Branch instruction is
encountered. (this slot is used for an independent instruction which is
scheduled in this slot - “branch and execute”)

RISC: Branch

IF D EX MA WBbreq:

IFinst+1:

target: IF D EX MA WB

the earliest available target instruction address

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 19

RISC: Branch

Next Instruction

Target Instruction

IR

Register
File

Decode

φ1 φ0 φ1

Decode

Instr.
Cache

Instruction Address Register:
IAR

+4 MUX

+

Offset

IAR+4

ra=rb

φ1 φ0

Instr. Fetch

Yes

It is Branch

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 20

RISC: “Branch and Execute”

1 One of the most useful instruction defined in RISC
architecture (it amounts to up to 15% increase in
performance) (also known as “delayed branch”)

1 Compiler has an intimate knowledge of the pipeline
(violation of the architecture principle, the machine is
defined as “visible through the compiler”)

1 Branch and Execute fills the empty instruction slot with:
an independent instruction before the Branch

instruction from the target stream (that will not change the state)

instruction from the fail path

It is possible to fill up to 70% of empty slots (Patterson-Hennesey)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 21

RISC: “Branch and Execute” - Example
Program to calculate:
 a = b + 1
 if (c=0) d = 0Sub-optimal: Optimal:

ld r2, b # r2=b
add r2, 1 # r2=b+1
st r2, a # a=b+1
ld r3, c # r3=c
bne r3,0, tg1 # skip
st 0, d # d=0

tg1: …...

load stall

load stall

lost cycle

Total = 9 cycles

ld r2, b # r2=b
ld r3, c # r3=c
add r2, 1 # r2=b+1

 bne r3,0, tg1 # skip
st r2, a # a=b+1
st 0, d # d=0

tg1: …...

Total = 6 cycles

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 22

A bit of history

Historical Machines
IBM Stretch-7030, 7090 etc.

IBM S/360

IBM 370/XA

IBM 370/ESA

IBM S/3090

PDP-8 CDC 6600

Cyber

Cray -I

RISC

PDP-11

VAX-11

circa 1964

CISC

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 23

Important Features Introduced

1 Separate Fixed and Floating point registers (IBM S/360)

1 Separate registers for address calculation (CDC 6600)

1 Load / Store architecture (Cray-I)

1 Branch and Execute (IBM 801)

Consequences:
Hardware resolution of data dependencies (Scoreboarding CDC

6600, Tomasulo’s Algorithm IBM 360/91)

Multiple functional units (CDC 6600, IBM 360/91)

Multiple operation within the unit (IBM 360/91)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 24

RISC: History
CDC 6600: 1963

Cyber

Cray -I: 1976

HP-PA: 1986

IBM ASC: 1970

IBM 801: 1975

IBM PC/RT: 1986

IBM RS/6000: 1990

PowerPC: 1993

RISC-1
Berkeley 1981

SPARC v.8: 1987

SPARC v.9: 1994

MIPS
Stanford 1982

MIPS-1: 1986

MIPS-2: 1989

MIPS-3: 1992

MIPS-4: 1994

DEC - Alpha: 1992

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 25

Reaching beyond the CPI of one:
The next challenge

1 With the perfect caches and no lost cycles in the pipeline
the CPI * 1.00

1 The next step is to break the 1.0 CPI barrier and go beyond

1 How to efficiently achieve more than one instruction per
cycle ?

1 Again the key is exploitation of parallelism:
on the level of independent functional units

on the pipeline level

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 26

How does super-scalar pipeline look like ?

Instruction
Fetch
Unit

•block of instructions
 being fetched from I-Cache
•Instructions screened for Branches
•possible target path being fetched

Instructions
Decode,
Dispatch

Unit

IF DEC EXE WB

EU-1

EU-2

EU-3

EU-4

EU-5

Data
Cache

•instructions decoded and sent to
corresponding EUs.
•they could be sent out of order
(out-of-order-issue)

•instructions completed
 data available (possibly
 out of order)

•data written to Cache
 (in-order)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 27

Super-scalar Pipeline

1 One pipeline stage in super-scalar implementation may
require more than one clock. Some operations may take
several clock cycles.

1 Super-Scalar Pipeline is much more complex - therefore it
will generally run at lower frequency than single-issue
machine.

1 The trade-off is between the ability to execute several
instructions in a single cycle and a lower clock frequency
(as compared to scalar machine).

 - “Everything you always wanted to know about computer architecture
can be found in IBM 360/91”

Greg Grohowsky, Chief Architect of IBM RS/6000

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 28

Super-scalar Pipeline (cont.)

IBM 360/91 pipeline

IBM 360/91 reservation table

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 29

Deterrents to Super-scalar Performance

1 The cycle lost due to the Branch is much costlier in case of
super-scalar. The RISC techniques do not work.

1 Due to several instructions being concurrently in the
Execute stage data dependencies are more frequent and
more complex

1 Exceptions are a big problem (especially precise)

1 Instruction level parallelism is limited

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 30

Super-scalar Issues

1 contention for resources
to have sufficient number of available hardware resources

1 contention for data

1 synchronization of execution units
to insure program consistency with correct data and in correct

order

1 to maintain sequential program execution with several
instructions in parallel

1 design high-performance units in order to keep the system
balanced

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 31

Super-scalar Issues

1 Low Latency:
to keep execution busy while Branch Target is being fetched

requires one cycle I-Cache

1 High-Bandwidth:
I-Cache must match the execution bandwidth (4-instructions issued

IBM RS/6000, 6-instructions Power2, PowerPC620)

1 Scanning for Branches:
scanning logic must detect Branches in advance (in the IF stage)

 The last two features mean that the I-Cache bandwidth must be greater

than the raw bandwidth required by the execution pipelines. There is
also a problem of fetching instructions from multiple cache lines.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 32

Super-Scalars: Handling of a Branch

RISC Findings:
1 BEX - Branch and Execute:

 the subject instruction is executed whether or not the Branch is taken

we can utilize:
(1) subject instruction (2) an instruction from the target (3) an

instruction from the “fail path”

Drawbacks:

1 Architectural and implementation:
if the subject instruction causes an interrupt, upon return branch

may be taken or not. If taken Branch Target Address must be
remembered.

this becomes especially complicated if multiple subject instructions
are involved

efficiency: 60% in filling execution slots

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 33

Super-Scalars: Handling of a Branch

 Classical challenge in computer design:
 In a machine that executes several instructions per cycle the effect of

Branch delay is magnified. The objective is to achieve zero execution
cycles on Branches.

1 Branch typically proceed through the execution consuming at least one
pipeline cycle (most RISC machines)

1 In the n-way Super-Scalar one cycle delay results in n-instructions
being stalled.

1 Given that the instructions arrive n-times faster - the frequency of
Branches in the Decode stage is n-times higher

 Separate Branch Unit required

 Changes made to decouple Branch and Fixed Point Unit(s) must be
introduced in the architecture

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 34

Super-Scalars: Handling of a Branch

Conditional Branches:

1 Setting of the Condition Code (a troublesome issue)

1 Branch Prediction Techniques:
Based on the OP-Code

Based on Branch Behavior (loop control usually taken)

Based on Branch History (uses Branch History Tables)

Branch Target Buffer (small cache, storing Branch Target
Address)

Branch Target Tables - BTT (IBM S/370): storing Branch Target
instruction and the first several instructions following the target

Look-Ahead resolution (enough logic in the pipeline to resolve
branch early)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 35

Techniques to Alleviate Branch Problem*

Loop Buffers:

1 Single-loop buffer

1 Multiple-loop buffers (n-sequence, one per buffer)

Machines:
CDC Star-100: loop buffer of 256 bytes

CDC 6600: 60 bytes loop buffer

CDC 7600: 12 60-bit words

CRAY-I: four loop buffers, content replaced in FIFO
manner (similar to 4-way associative I-Cache)

[*Lee, Smith, “Branch Prediction Strategies and Branch Target Buffer Design”, Computer January, 1984.]

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 36

Techniques to Alleviate Branch Problem

1 Following Multiple Instruction Streams

Problems:
BT cannot be fetched until BTA is determined (requires

computation time, operands may not be available)

Replication of initial stages of the pipeline: additional branch
requires another path:

, for a typical pipeline more than two branches need to be processed to
yield improvement.

, hardware required makes this approach impractical

Cost of replicating significant part of the pipeline is substantial.

Machines that Follow multiple I-streams:
IBM 370/168 (fetches one alternative path), IBM 3033 (pursues two

alternative streams)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 37

Techniques to Alleviate Branch Problem

Prefetch Branch Target:

1 Duplicate enough logic to prefetch branch target
If taken, target is loaded immediately into the instruction decode

stage

Several prefetches are accumulated along the main path

The IBM 360/91 uses this mechanism to prefetch a double-
word target.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 38

Techniques to Alleviate Branch Problem

Look-Ahead Resolution:

1 Placing extra logic in the pipeline so that branch can be
detected and resolved at the early stage:
Whenever the condition code affecting the branch has been

determined

(“Zero-Cycle Branch”, “Branch Folding”)

1 This technique was used in IBM RS/6000:
Extra logic is implemented in a separate Branch Execution Unit to

scan through the I-Buffer for Branches and to:

(1) Generate BTA, (2) determine the BR outcome if possible and if
not (3) dispatch the instruction in conditional fashion

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 39

Techniques to Alleviate Branch Problem

Branch Behavior:

Types of Branches:

ÿ Loop-Control: usually taken, backward

ÿ If-then-else: forward, not consistent

ÿ Subroutine Calls: always taken

 Just by predicting that the Branch is taken we are guessing right 60-
70% of the time [Lee,Smith](67% of the time, [Patterson-Hennessy])

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 40

Techniques to Alleviate Branch Problem:
Branch prediction

Prediction Based on Direction of the Branch:

ÿ Forward Branches are taken 60% of the time, backward branches 85%
of the time [Patterson-Hennessy]

Based on the OP-Code:
ÿ Combined with the always taken guess (60%) the information on the

opcode can raises the prediction to: 65.7-99.4% [J. Smith]

ÿ In IBM CPL mix always taken is 64% of the time true, combined with
the opcode information the prediction accuracy rises to 66.2%

 The prediction based on the OP-Code is much lower than the
prediction based on branch history.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 41

Techniques to Alleviate Branch Problem:
 Branch prediction

Prediction Based on Branch History:

Branch AddressIAR:

lower portion
of the address

T
NT
T
NT
NT
T
.
.

(T / NT)

Two-bit prediction scheme
based on Branch History

FSM

T

NT

T

NT
NT

NT

T

T
T NT

T

NT

T / NT

Prediction Accuracy:
- 4096 entries buffer using two
bit scheme:
 82-99% for the Spec89

[Patterson-Hennessy]

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 42

Techniques to Alleviate Branch Problem:
 Branch prediction

Prediction Using Branch Target Buffer (BTB):

IAR This table contains
only “taken” branches

IF

Yes - it is found: it is a “taken” Branch !

I-Address T-Instruct Address
MUX

Selc

IAR+4

Next instruction
to be fetched

Target Instruction will be
available in the next cycle:
no lost cycles !

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 43

Techniques to Alleviate Branch Problem:
Branch prediction

Difference between Branch Prediction and Branch Target

Buffer:

ÿ In case of Branch Prediction the decision will be made
during Decode stage - thus, even if predicted correctly the
Target Instruction will be late for one cycle.

ÿ In case of Branch Target Buffer, if predicted correctly, the
Target Instruction will be the next one in line - no cycles
lost.

(if predicted incorrectly - the penalty will be two cycles in both cases)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 44

Techniques to Alleviate Branch Problem:
 Branch prediction

Prediction Using Branch Target Table (BTT):

Target Instruction will be
available in decode:
no cycle used for Branch !!
This is known as “Branch-
Folding”

IAR This table contains unconditional
branches only

IF

It is there !

I-Address Target Instruction

IR

Several instructions
following the target

ID

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 45

Techniques to Alleviate Branch Problem:
Branch prediction

Branch Target Buffer Effectiveness:

ÿ BTB is purged when address space is changed
(multiprogramming)

ÿ 256 entry BTB has a hit ratio of 61.5-99.7% (IBM/CPL).
prediction accuracy 93.8%

Hit ratio of 86.5% obtained with 128 sets of four entries

4.2% incorrect due to the target change

overall accuracy = (93.8-4.2) X 0.87 = 78%

ÿ BTB yields overall 5-20% performance improvement

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 46

Techniques to Alleviate Branch Problem:
Branch prediction

IBM RS/6000:

Statistic from 801 shows:

20% of all FXP instructions are Branches:

1/3 of all the BR are unconditional (potential “zero cycle”)

1/3 of all the BR are used to terminate DO loop (“zero cycle”)

1/3 of all the BR are conditional: they have 50-50 outcome

Unconditional and loop terminate branches (BCT instruction
introduced in RS/6000) are “zero-cycle”, therefore:

 Branch Penalty = 2/3X0+1/6X0+16X2 = 0.33 cycles for branch on the
average

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 47

Techniques to Alleviate Branch Problem:
Branch prediction

IBM PowerPC 620:

ÿ IBM RS/6000 did not have “Branch Prediction”. The penalty of 0.33
cycles for Branch seems to high. It was found that “prediction” is
effective and not so difficult to implement.

A 256-entry, two-way set associative BTB is used to predict the
next fetch address, first.

A 2048-entry Branch Prediction Buffer (BHT) used when the BTB
does not hit but the Branch is present.

Both BTB and BHT are updated, if necessary.

ÿ There is a stack of return address registers used to predict subroutine
returns.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 48

Techniques to Alleviate Branch Problem:
Contemporary Microprocessors

DEC Alpha 21264:

1 Two forms of prediction and dynamic selection of better one

MIPS R10000:
1 Two bit Branch History Table and Branch Stack to restore misses.

HP 8000:
1 32-entry BTB (fully associative) and 256 entry Branch History Table

Intel P6:
1 Two-level adaptive branch prediction

Exponential:
1 256-entry BTB, 2-bit dynamic history, 3-5 cycle misspredict penalty

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 49

Techniques to Alleviate Branch Problem:
How can the Architecture help ?

ÿ Conditional or Predicated Instructions

 Useful to eliminate BR from the code. If condition is true the
instruction is executed normally if false the instruction is treated as
NOP:

if (A=0) (S=T) ; R1=A, R2=S, R3=T

BNEZ R1, L
MOV R2, R3 replaced with: CMOVZ R2,R3, R1

 L: ……..

ÿ Loop Closing instructions: BCT (Branch and Count, IBM
RS/6000)

 The loop-count register is held in the Branch Execution Unit - therefore it is
always known in advance if BCT will be taken or not (loop-count register
becomes a part of the machine status)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 50

Super-scalar Issues: Contention for Data

Data Dependencies:

1 Read-After-Write (RAW)
also known as: Data Dependency or True Data Dependency

1 Write-After-Read (WAR)
knows as: Anti Dependency

1 Write-After-Write (WAW)
known as: Output Dependency

WAR and WAW also known as: Name Dependencies

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 51

Super-scalar Issues: Contention for Data

True Data Dependencies: Read-After-Write (RAW)

An instruction j is data dependent on instruction i if:
, Instruction i produces a result that is used by j, or

, Instruction j is data dependent on instruction k, which is data dependent on
instruction I

Examples*:

SUBI R1, R1, 8 ;decrement pointer
BNEZ R1, Loop ; branch if R1 != zero

LD F0, 0(R1) ;F0=array element
ADDD F4, F0, F2 ;add scalar in F2
SD 0(R1), F4 ; store result F4

*[Patterson-Hennessy]

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 52

Super-scalar Issues: Contention for Data

True Data Dependencies:

Data Dependencies are property of the program. The presence of
dependence indicates the potential for hazard, which is a property
of the pipeline (including the length of the stall)

A Dependence:
, indicates the possibility of a hazard

, determines the order in which results must be calculated

, sets the upper bound on how much parallelism can possibly be
exploited.

 i.e. we can not do much about True Data Dependencies in
hardware. We have to live with them.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 53

Super-scalar Issues: Contention for Data

Name Dependencies are:

1 Anti-Dependencies (Write-After-Read, WAR)
 Occurs when instruction j writes to a location that instruction i

reads, and i occurs first.

1 Output Dependencies (Write-After-Write, WAW)
 Occurs when instruction i and instruction j write into the same

location. The ordering of the instructions (write) must be
preserved. (j writes last)

 In this case there is no value that must be passed between the instructions. If
the name of the register (memory) used in the instructions is changed, the
instructions can execute simultaneously or be reordered.

The hardware CAN do something about Name Dependencies !

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 54

Super-scalar Issues: Contention for Data
Name Dependencies:

1 Anti-Dependencies (Write-After-Read, WAR)
ADDD F4, F0, F2 ; F0 used by ADDD

LD F0, 0(R1) ; F0 not to be changed before read by ADDD

1 Output Dependencies (Write-After-Write, WAW)

LD F0, 0(R1) ;LD writtes into F0

ADDD F0, F4, F2 ; Add should be the last to write into F0

 This case does not make much sense since F0 will be overwritten, however
this combination is possible.

 Instructions with name dependencies can execute simultaneously if
reordered, or if the name is changed. This can be done: statically (by
compiler) or dynamically by the hardware

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 55

Super-scalar Issues: Dynamic Scheduling

1 Thornton Algorithm (Scoreboarding): CDC 6600 (1964)
*One common unit: Scoreboard which allows instructions to

execute out of order, when resources are available and
dependencies are resolved.

1 Tomasulo’s Algorithm: IBM 360/91 (1967)
*Reservation Stations used to buffer the operands of instructions

waiting to issue and to store the results waiting for the register.
Common Data Buss (CDB) used to distribute the results directly to
the functional units.

1 Register-Renaming: IBM RS/6000 (1990)
*Implements more physical registers than logical (architect). They

are used to hold the data until the instruction commit.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 56

Super-scalar Issues: Dynamic Scheduling
Thornton Algorithm (Scoreboarding): CDC 6600

Scoreboard

Unit Stts Regs. usd Pend. wrt OK Read

Instructions in
a queue

R
elease

I
s

s
u

e

Rea
d

S
tore

P
ending W

rite

Value
signals

to
registers

Fi, Fj, Fk

Div
Mult
Add

signals
to

execution
units

Qj, Qk Rj, Rk

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 57

Super-scalar Issues: Dynamic Scheduling

Thornton Algorithm (Scoreboarding): CDC 6600 (1964)

Performance:

 CDC6600 was 1.7 times faster than CDC6400 (no
scoreboard, one functional unit) for FORTRAN and 2.5
faster for hand coded assembly

Complexity:

 To implement the “scoreboard” as much logic was used
as to implement one of the ten functional units.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 58

Super-scalar Issues: Dynamic Scheduling
Tomasulo’s Algorithm: IBM 360/91 (1967)

FLP Buffer

Fnct. Unit-1 Fnct. Unit-2

FLP Registers
Reserv. Station Reserv. Station

TAG Source Data TAG Source Data

Common Data Bus

Busy
TAG

DATA

FLP
Operation

Stack

Source TAG Source TAGData Data Data

Store
Queue

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 59

Super-scalar Issues: Dynamic Scheduling

Tomasulo’s Algorithm: IBM 360/91 (1967)

The key to Tomasulo’s algorithm are:

1 Common Data Bus (CDB)
CDB carries the data and the TAG identifying the source of the data

1 Reservation Station
Reservation Station buffers the operation and the data (if available)

awaiting the unit to be free to execute. If data is not available it
holds the TAG identifying the unit which is to produce the data.
The moment this TAG is matched with the one on the CDB the
data is taken and the execution will commence.

Replacing register names with TAGs “name dependencies” are
resolved. (sort of “register-renaming”)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 60

Super-scalar Issues: Dynamic Scheduling

Register-Renaming: IBM RS/6000 (1990)

Consist of:

1 Remap Table (RT): providing mapping form logical to
physical register

1 Free List (FL): providing names of the registers that are
unassigned - so they can go back to the RT

1 Pending Target Return Queue (PTRQ): containing physical
registers that are used and will be placed on the FL as soon
as the instruction using them pass decode

1 Outstanding Load Queue (OLQ): containing registers of
the next FLP load whose data will return from the cache. It
stops instruction from decoding if data has not returned

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 61

Super-scalar Issues: Dynamic Scheduling
Register-Renaming Structure: IBM RS/6000 (1990)

R0 R1
T S1 S2 S3 T S1 S2 S3

Remap Table
32 entries of 6-b

There are 32 logical registers and 40
implemented (physical) registers

Instruction Decode
Buffer PSQ

PTRQ

Free List

Busy Bypass Outstnd. Load Q

LC, SC GB, T

Decode

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 62

Power of Super-scalar Implementation
Coordinate Rotation: IBM RS/6000 (1990)

x1 = x cosθ - y sinθ
y1 = y cosθ + x sinθ

FL FR0, sin theta ;laod rotation matrix

FL FR1, -sin theta ;constants

FL FR2, cos theta ;

FL FR3, xdis ;load x and y

FL FR4, ydis ;displacements

MTCTR I ;load Count register with loop count

UFL FR8, x(i) ;laod x(i)

FMA FR10, FR8, FR2, FR3 ;form x(i)cos + xdis

UFL FR9, y(i) ;laod y(i)

FMA FR11, FR9, FR2, FR4 ;form y(i)cos + ydis

FMA FR12, FR9, FR1, FR10 ;form -y(i)sin + FR10

FST FR12, x1(i) ;store x1(i)

FMA FR13, FR8, FR0, FR11 ;form x(i)sin + FR11

FST FR13, y1(i) ;store y1(i)

BC LOOP ;continue for all points

LOOP:

This code, 18 instructions worth, executes in 4 cycles in a loop

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 63

Super-scalar Issues: Dynamic Scheduling
Register-Renaming: IBM RS/6000 (1990)

How does it work ?

Arithmetic:

1 5-bit register field replaced by a 6-bit physical register
field instruction (40 physical registers)

1 New instruction proceeds to IDB or Decode (if available)

1 Once in Decode compare w/BSY, BP or OLQ to see if
register is valid

1 After being released from decode
the SC increments PSQ to release stores

the LC increments PTRQ to release the registers to the FL (as long
as there are no Stores using this register - compare w/ PSQ)

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 64

Super-scalar Issues: Dynamic Scheduling
Register-Renaming: IBM RS/6000 (1990)

How does it work ?

Store:

1 Target is renamed to physical register and ST is executed
in parallel

1 ST is placed on PSQ until value of the register is available.
Before leaving REN the SC of the most recent instruction
prior to it is incremented. (that could have been the
instruction that generates the result)

1 When ST reaches a head of PSQ the register is compared
with BYS and OLQ before executed

1 GB is set, tag returned to FL, FXP uses ST data buffer for
the address

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 65

Super-scalar Issues: Dynamic Scheduling
Register-Renaming: IBM RS/6000 (1990)

How does it work ?

Load:

1 Defines a new semantic value, causing REN to be updated

1 REN table is accessed and the target register name is
placed on the PRTQ (can not be returned immediately)

1 Tag at the head of FL is entered in the REN table

1 The new physical register name is placed on OLQ and the
LC of the prior arithmetic instruction incremented

1 GB is set, tag returned to FL, FXP uses ST data buffer for
the address

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 66

Super-scalar Issues: Dynamic Scheduling
Register-Renaming: IBM RS/6000 (1990)

How does it work ?

Returning names to the FL:

1 Names are returned to the FL from PTRQ when the
content of the physical register becomes free - the last
arithmetic instruction or store referencing that physical
register has been performed:

Arithmetic: when they complete decode

Stores: when they are removed from the store queue

 When LD causes new mapping, the last instruction that could have
used that physical register was the most recent arithmetic instruction,
or ST. Therefore when the most recent prior arithmetic decoded or
store has been performed that physical register can be returned

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 67

Super-scalar Issues: Dynamic Scheduling
Register-Renaming: IBM RS/6000 (1990)

Example:

Original stream Rename Table Free
Head

Renamed stream PTRQ

FADD R3, R2, R1
FST R3
FLD R3
FMUL R6, R3, R1
FSUB R2, R6, R2
FLD R3

(1,1);(2,2);(3,3)
(3,3)
(3,3)
(1,1);(3,32);(6,6)
(2,2);(6,6);(2,2)
(3,32)

32
32
32
33
33
33

R3, R2, R1
R3
PR32
R6, R32, R1
R2, R6, R2
PR33

3

32

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 68

Super-scalar Issues: Exceptions

Super-scalar processor achieves high performance by allowing instruction
execution to proceed without waiting for completion of previous ones.
The processor must produce a correct result when an exception occurs.

Exceptions are one of the most complex areas of computer architecture,
they are:

Precise: when exception is processed, no subsequent instructions have
begun execution (or changed the state beyond of the point of
cancellation) and all previous instruction have completed

Imprecise: leave the instruction stream in the neighborhood of the
exception in recoverable state

RS/6000: precise interrupts specified for all program generated interrupts, each
interrupt was analyzed and means of handling it in a precise fashion developed

External Interrupts: handled by stopping the I-dispatch and waiting for the pipeline
to drain.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 69

Super-scalar Issues:
Instruction Issue and Machine Parallelism

1 In-Order Issue with In-Order Completion:
The simplest instruction-issue policy. Instructions are issued in

exact program order. Not efficient use of super-scalar resources.
Even in scalar processors in-order completion is not used.

1 In-Order Issue with Out-of-Order Completion:
Used in scalar RISC processors (Load, Floating Point).

It improves the performance of super-scalar processors.

Stalled when there is a conflict for resources, or true dependency.

1 Out-of-Order Issue with I Out-of-Order Completion:
The decoder stage is isolated from the execute stage by the

“instruction window” (additional pipeline stage).

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 70

Super-scalar Examples:
Instruction Issue and Machine Parallelism

DEC Alpha 21264:

1 Four-Way (Six Instructions peak), Out-of-Order Execution

MIPS R10000:
1 Four Instructions, Out-of-Order Execution

HP 8000:
1 Four-Way, Agressive Out-of-Order execution, large Reorder Window

1 Issue: In-Order, Execute: Out-of-Order, Instruction Retire: In-Order

Intel P6:
1 Three Instructions, Out-of-Order Execution

Exponential:
1 Three Instructions, In-Order Execution

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 71

Super-scalar Issues:
The Cost vs. Gain of Multiple Instruction Execution

PowerPC Example:
Feature 601+ 604 Difference

Frequency 100MHz 100MHz same

CMOS Process .5u 5-metal .5u 4-metal ~same

Cache Total 32KB Cache 16K+16K Cache ~same

Load/Store Unit No Yes

Dual Integer Unit No Yes

Register Renaming No Yes

Peak Issue 2 + Branch 4 Instructions ~double

Transistors 2.8 Million 3.6 Million +30%

SPECint92 105 160 +50%

SPECfp02 125 165 +30%

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 72

Super-scalar Issues:
Comparisson of leading RISC microrpocessors

Feature Digital
21164

MIPS
10000

PowerPC
 620

HP 8000 Sun
UltraSparc

Frequency 500 MHz 200 MHz 200 MHz 180 MHz 250 MHz

Pipeline Stages 7 5-7 5 7-9 6-9

Issue Rate 4 4 4 4 4

Out-of-Order
Exec.

6 loads 32 16 56 none

Register Renam.
(int/FP)

none/8 32/32 8/8 56 none

Transistors/
Logic transistors

9.3M/
1.8M

5.9M/
2.3M

6.9M/
2.2M

3.9M*/
3.9M

3.8M/
2.0M

SPEC95
(Intg/FlPt)

12.6/18.3 8.9/17.2 9/9 10.8/18.3 8.5/15

Perform./ Log-trn
(Intg/FP)

7.0/10.2 3.9/7.5 4.1/4.1 2.77*/4.69 4.25/7.5

 * no cache

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 73

Super-scalar Issues:
Value of Out-of-Order Execution

Feature MIPS
5000

MIPS
10000

HP-PA
7300LC

HP 8000 Digital
21164

Digital
21264

Frequency 180 MHz 200 MHz 160 MHz 180 MHz 500 MHz 600 MHz

Pipeline Stages 5 5-7 5 7-9 7 7/9

Issue Rate 2 4 2 4 4 4+2

Out-of-Order
Exec.

none 32 none 56 6 loads 20i+15fp

Register-Renam.
(int/FP)

none 32/32 none 56 none/8 80/72

Transistors/
Logic transistors

3.6M/
1.1

5.9M/
2.3M

9.2M/
1.7M

3.9M*/
3.9M

9.3M/
1.8M

15.2M/
6M

Cache 32/32K 32/32K 64/64K none 8/8/96 64/64K

SPEC95
(Intg/FlPt)

4.0/3.7 8.9/17.2 5.5/7.3 10.8/18.3 12.6/18.3 ~36/~60

Perform./ Log-Tr
(Intg/FP)

3.6/3.4 3.9/7.5 3.2/4.3 2.77*/4.69 7.0/10.2 6.0/10.0

 * no cache

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 74

The ways to exploit instruction parallelism

1 Super-scalar:

takes advantage of instruction parallelism to reduce the average
number of cycles per instruction.

1 Super-pipelined:

takes advantage of instruction parallelism to reduce the cycle time.

1 VLIW:

takes advantage of instruction parallelism to reduce the number of
instructions.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 75

The ways to exploit instruction parallelism:
Pipeline

Super-scalar:

Scalar:

IF ID EXE WB

IF ID EXE WB

IF ID EXE WB

0 1 2 3 4 5

0 1 2 3 4 5

IF ID EXE WB
IF ID EXE WB
IF ID EXE WB

IF ID EXE WB
IF ID EXE WB
IF ID EXE WB

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 76

The ways to exploit instruction parallelism:
Pipeline

VLIW:

Super-pipelined:

IF ID EXE WB

IF ID EXE WB

IF ID EXE WB

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4

IF ID EXE WB
EXE WB
EXE WB

IF ID EXE WB
EXE WB
EXE WB

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 77

Very-Long-Instruction-Word Processors

1 A single instruction specifies more than one concurrent
operation:
This reduces the number of instructions in comparison to scalar.

The operations specified by the VLIW instruction must be
independent of one another.

1 The instruction is quite large:
Takes many bits to encode multiple operations.

VLIW processor relies on software to pack the operations into an
instruction.

Software uses technique called “compaction”. It uses no-ops for
instruction operations that cannot be used.

VLIW processor is not software compatible with any general-
purpose processor !

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 78

Very-Long-Instruction-Word Processors

1 VLIW processor is not software compatible with any
general-purpose processor !

1 It is difficult to make different implementations of the
same VLIW architecture binary-code compatible with one
another.
because instruction parallelism, compaction and the code depend

on the processor’s operation latencies

1 Compaction depends on the instruction parallelism:
In sections of code having limited instruction parallelism most of

the instruction is wasted

1 VLIW lead to simple hardware implementation

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 79

Super-pipelined Processors

1 In Super-pipelined processor the major stages are divided
into sub-stages.
The degree of super-pipelining is a measure of the number of sub-

stages in a major pipeline stage.

It is clocked at a higher frequency as compared to the pipelined
processor (the frequency is a multiple of the degree of super-
pipelining).

This adds latches and overhead (due to clock skews) to the overall
cycle time.

Super-pipelined processor relies on instruction parallelism and true
dependencies can degrade its performance.

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 80

Super-pipelined Processors

1 As compared to Super-scalar processors:
Super-pipelined processor takes longer to generate the result.

Some simple operation in the super-scalar processor take a full
cycle while super-pipelined processor can complete them sooner.

At a constant hardware cost, super-scalar processor is more
susceptible to the resource conflicts than the super-pipelined one.
A resource must be duplicated in the super-scalar processor, while
super-pipelined avoids them through pipelining.

1 Super-pipelining is appropriate when:
The cost of duplicating resources is prohibitive.

The ability to control “clock skew” is good

 This is appropriate for very high speed technologies: GaAs, BiCMOS,
ECL (low logic density and low gate delays).

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 81

Conclusion
1 Difficult competition and complex designs ahead, yet:
 “Risks are incurred not only by undertaking a development, but also by

not undertaking a development” - *Mike Johnson (Super-scalar
Microprocessor Design, Prentice-Hall 1991)

1 Super-scalar techniques will help performance to grow
faster, with less expense as compared to the use of new
circuit technologies and new system approaches such as
multiprocessing.*

1 Ultimately, super-scalar techniques buy time to determine
the next cost-effective techniques for increasing
performance.*

Prof. Vojin G. Oklobdzija ISSCC’97 Tutorial slide 82

Acknowledgment
I thank those people for reading my overheads - correcting

my sspeling mistkes and making usefull and valuable
suggestions and contributions toward improvement:

–William Bowhill, DEC

–Ian Young, Intel

–Krste Asanovic, UC Berkeley

